時空と素粒子の生まれ方

光速度cとプランク定数fの同時対生成

= ギャップ・スペース理論 =

GAPS Theory

新実 祥悟

* * * * * * * *

愛知県蒲郡市鹿島町西郷 89

shogo-ni@sk2.aitai.ne.jp

* * * * * * * * * * * * * * * * * *

目次

* * * * * * * * * *

1, 概説

- 2, 空間の概念とその相互作用
 - (1) 基素関数の導出
 - (2) 基素関数の拡張(a)

3. 変数の意味付け

- (1) ω、σ、τの意味
- (2) 基素関数の拡張(b)

4, 光速度 c とプランク定数 h の同時対導出

- (1) 全空間 H⁹の生まれ方
 - (2) cとhの導出
 - (3) 式のまとめ

5, 空間の曲率と関連

- (1) 全空間の曲率Φ
- (2) 微小変動角 *Δ* δ_iと歳差運動
 - (3) 各空間の関連

6, 量子作用素 c **h**

- (1) Vと甘の演算
- (2) ベクトル解析 (補)

- 1 -

7, 質量の閉じ込めと混合

- (1) 質量式の導出
- (2) 角運動量とスピン
- (3) 量子作用素 **G** と質量の関係

8, 力の統一

- (1) 分数電荷と素電荷
- (2) 重力とクーロン力からの考察

9, 次なるステップ

1, 概説

まずこの小文がどのような仮定の下に構築され、結果として何が得られたか を述べる。

私達の宇宙はビッグバンにより生まれたと言われている。ところが、ビッグ バンそのものを説明する理論は見当たらない。最新のM理論でさえ、それを表 現しているとは思えない。その理由はM理論も光速度cとプランク定数hは公 理として扱われ、論理的に導出されていないからだ。ところが最近になって、 私がある仮定の下に導出した基素関数がcとhを表すことが分かった。正直に 言って、変数の取り方や数値の当てはめ方という問題の方が重要だとはいえ、 パソコンの数値演算能力が格段に高まっていたことを感謝する。以下では理論 の要点を書き出そう。

- ① 次元のない全空間 H の存在を認める。
- ② Hはcとhの絶妙なるコンビネーションにより相転移を起こした。
- 13 相転移後の全空間 H は、各々三つの次元を持つ実空間 R³、複素空間 G³、 虚空間 I³に分裂した 9 次元の空間 H⁹になった。
- それを以下のように表記する。

$\mathbf{H}^{\mathrm{Het} \vartheta} \rightarrow \mathbf{H}^{9} = [\mathbf{R}^{3} \mid \mathbf{G}^{3} \mid \mathbf{I}^{3}]$

- ⑤ G³をギャップ空間と言おう。これは R³と I³の再結合を妨げるように両者の間に出現した、まるで膜のように見える単位複素空間 G³である。
- ⑥ R³、C³、I³は完全分裂をしたわけではなく、R³とI³はC³によって結ばれている不完全分裂と見なされる。
- ⑦ この状況を理論演算式で表し、そこから基素関数

 $\mathbf{f}(\theta_{j}) = \pm \Re \omega_{j} \exp(\pm \sigma_{j} \tau) \cos \omega_{j} \tau$

を得る。

⑧ この基素関数からcとちが同時対生成されることが分かった。

c = 299792458 [m¹ · s⁻¹], $\hbar = 1.054571596 \times 10^{-34}$ [J · s¹]

⑨ この全空間には擬ブロムウィッチ=ワグナー球を想定でき、この半径をwと すると全空間H⁹の曲率は

$\Phi = 1.10267894 \times 10^{-45}$ [s¹ rad⁻¹]

である。ただし、距離の単位を持っていないことに注意。

⑩ 基素関数をベクトルだと認めると、その二次的な式からスピン量子数 0、1/4、

1/2、1、2、4が得られる。また、電子のスピン角運動量√3/2**h**なども表現される。

- ⑪ 同様に、そこには分数電荷が何故表れないかが説明される。
- ② クォーク及びその混合、閉じ込め、そしてその複合粒子である核子や中間
 子の成り立ちが説明される。
- ③ 同様の手法でニュートリノ振動も説明される。
- ④ 実は大きな疑問点も現れた。それは、光子は質量を持っている可能性があるということだ。もしそうなら、光速度cが全空間H⁹での最大速度ではなく、光子とニュートリノの速度差が殆どない、もしくは同じ、という観測事実を説明する。
- 15 四つの相互作用が統一される。

2, 空間の概念とその相互作用

§2-(1) 基素関数の導出

距離空間とは、一般的には三つの次元(x_1 , x_2 , x_3)で表される。これに対しミ ンコフスキーは、ictを導入し時空(x_1 , x_2 , x_3 , ict)を設定した。今ここで虚空 間i(x_1 , x_2 , x_3)の存在を仮定すると、これはi(ct₁, ct₂, ct₃)と書き直される。 この虚空間をミンコフスキー時空に入れると

$$\mathbf{C}^{6} = [x_{1}, x_{2}, x_{3}, i (ct_{1}, ct_{2}, ct_{3})]$$
[2 - 1]

という拡張された 6 次元の虚実空間になる。当然、実空間の次元 x_jは光速度 c、 つまり光子の作用によって ct_jに読み替えられる。ところで私達は虚空間なる ものを感じ取ることはできない。ただし、それを時間として認識しているとし たらどうだろう。これは ic を作用素とすると

$$\mathbf{x}_{j} \stackrel{\mathrm{\tiny -1/c}}{\Rightarrow} \mathbf{it}_{j} \qquad \pm \hbar \mathbf{k} \qquad \mathbf{ix}_{j} \stackrel{\mathrm{\tiny 1.c}}{\Rightarrow} \mathbf{t}_{j} \qquad \qquad [2-2]$$

のように表記される。また、もし虚空間側から実空間を見たとしても、それは 時間としてしか捉えられないという逆双間関係も構成している。

ところで式[2-1]に依ると、いかにも時間には次元が備わっているように見える。しかし実際にはそういう訳ではなく、ただ虚空間の三つの次元を表すためだけの下付の添字だと考えてもらえばよい。では何故虚空間も3次元なのかというと、そうでなければ実空間と虚空間の間には双間関係を見出すことができなくなってしまうからだ。つまり、これは必要条件である。

関係式[2-2]は

$\mathbf{R}^3 \Leftrightarrow \mathbf{I}^3$

[2 - 3]

と書き直すことができる。このようにすると空間の発振が捉えやすくなる。

しかしまず、電子回路の発振に付いて述べる。発振回路は、基本的には増幅 回路と共振回路、そして出力側から入力側への帰還回路によって構成されてい る。 信号入力系を Vin、信号出力系を Vout、増幅共振回路を G(s)、帰還回路を β(s)とする[Fig.1]。

この発振回路は伝達関数を使って表され

$$Y(s) = G(s) \cdot Q(s) / [1 - \beta(s) \cdot G(s)] \qquad [2 - 4]$$

となり、閉ループ伝達関数は

$$Gf(s) = G(s) / [1 - \beta(s) \cdot G(s)]$$
 [2 - 5]

と表現される。ところで、回路を安定的に発振させるには、回路内でのエネル ギー損失を補うために、常にエネルギーを供給し続ける必要がある。しかしな がら

$$\beta(\mathbf{s}) \cdot \mathbf{G}(\mathbf{s}) = 1 \qquad [2 - 6]$$

が成り立つならばエネルギーの供給なしに回路は発振し続け、出力が得られる(電 田光-、桜井捷海/エレクトロニクスの基礎/物理学選書1/裳華房)。もし、式[2-6]の s の根が純虚数と して現れる場合、この回路は回路の持つ特性上の制限の下に、一定の周波数で 定状発振することになる。

今、ループ伝達関数を使ってラプラス変換を行なおう。この場合に注意しな ければならないことは、ラプラス演算子 s は一般的には複素数であって純虚数 とはならないということだ。そこで s にはやはり複素数を与えなければならな い。ところで、ラプラス演算子 s は式の収束という制限を担っているから

$$-s = +\sigma + i\omega$$
 $\pm i\omega$ $\pm i\omega$ $(2-7)$

を与えなければならない。

一般の回路では安定した発振を得るために共振回路が必要だが、安定させる 必要がない場合にはそれを外すことが出来る。その場合でも爆発的な発振をす る訳ではない。これも回路には特性上の制限があるからだ。利得についても同 様に無限大とはならない。そこで、式[2 - 6]の s の根が式[2 - 7]の右側になるよ うにすると

$$\beta$$
 (s) · G(s) = -(s - σ)²/ ω ²

[2 - 8]

とすればよい。これで電子回路の発振を表す準備はそろった。

ではここで空間の発振に関する解を得るために、[Fig.2]のブロック図で考え よう。一見したところ Vin も Vout もないように思えるが、 β (s)から G(s)へ入る ものを Vin、G(s)から β (s)へ行くものを Vout と考えよう。このブロック図を使う 場合には、式[2 - 5]を完全閉ループ伝達関数と呼ぼう。

そこでまず G(s)と $\beta(s)$ の意味付けをしよう。G(s)は実空間の構造と同等であるとし X^2 とする。 $\beta(s)$ は虚空間の構造と同等であるとすれば $(iX)^2$ と置くことが出来るが、実空間から見ると i c が抜けた時間としてしか見えないと考えるため T^2 とする。これにより $(iX)^2$ は $(icT)^2$ に置き換えられるから

$$X^2 = -(icT)^2$$
 [2 - 9]

となる。これらを考慮すると

$$\beta$$
 (s) = -G(s) / c² [2 - 10]

という関係になり、そして

$$\beta(\mathbf{s}) \cdot \mathbf{G}(\mathbf{s}) = -\mathbf{G}(\mathbf{s}) \cdot \mathbf{G}(\mathbf{s}) / \mathbf{c}^2 \qquad [2 - 11]$$

とできる。また、式[2-8]より

G(s)
$$\cdot$$
 G(s) $/ c^2 = (s - \sigma)^2 / \omega^2$ [2 - 12]

となり

$$\mathbf{G}(\mathbf{s}) = \pm \mathbf{c}(\mathbf{s} - \sigma) / \omega \qquad [2 - 13]$$

が得られる。ここで式[2-8]と式[2-13]を式[2-5]に入れると

$$Gf(s) = \pm [c(s - \sigma) / \omega] / [1 + (s - \sigma)^2 / \omega^2]$$
$$= \pm c \omega [(s - \sigma) / ((s - \sigma)^2 + \omega^2)] \qquad [2 - 14]$$

が求まる。この Gf(s)を逆ラプラス変換すると

 $a = L^{-1}[Gf(s)]$

 $=\pm \mathbf{c} \,\omega \, \mathbf{L}^{-1} \left[(\mathbf{s} - \sigma) / ((\mathbf{s} - \sigma)^2 + \omega^2) \right]$

が得られる。そして、ラプラス演算子 s の根(式[2-7]の左側)を考慮すると、式 [2-15]は

となる。これがギャップ空間理論(GAPS 理論)の基素関数である。

§2-(2) 基素関数の拡張(a)

実空間も虚空間も次元を三つ持つとしたため、式[2-16]はまだ手直しが必要だ。何故なら、それは実空間の一つの次元と虚空間の一つの次元との間の関係

でしかないからだ。実は、実空間の一つの次元に虚空間の一つの次元を対応さ せなければならないという制限は、伝達関数を取り扱う場合の一対一の対応と いう制限にもなっている。それを考慮すると、基素関数には三者の関係を表現 させなければならない。つまり

$$\mathbf{a}_{j} = \pm \mathbf{c} \, \omega_{j} \exp(\pm \sigma_{j} \tau) \cos \omega_{j} \tau , \qquad \mathbf{j} = 1, 2, 3 \qquad [2 - 17]$$

となる。もし式の簡略化が誤解を招かないようなら、正負の符号も省略して

$$\mathbf{a}_{j} = \mathbf{c} \,\omega_{j} \mathbf{e}^{\pm \rho}_{j} \mathbf{cos} \,\delta_{j}, \qquad \sigma_{j} \,\tau = \rho_{j}, \qquad \omega_{j} \,\tau = \delta_{j} \qquad [2 - 18]$$

と表記しよう。

次にはっきりさせなければならないことは、この式が実空間側から全空間を 見た場合に得られた関係式だということだ。では虚空間側から全空間を見ると どうなるか。その関係式は

$$\mathbf{i} \mathbf{a}_{\mathbf{j}} = \mathbf{i} \mathbf{c} \omega_{\mathbf{j}} \mathbf{e}^{\pm \rho} \mathbf{j} \cos \delta_{\mathbf{j}}$$
 [2 - 19]

で表される。ここで式[2-9]を導出した話を思い出してもらおう。そこでは実空間も虚空間も自乗したものがブロック図に当てはまることになっている。つまり実空間と虚空間が直干渉した場合には、基素関数もそのように取り扱わなければならないということだ。もっとやさしく言うと、実空間と虚空間は自乗した状態で出会うということで、基素関数も自乗して出会わせることになる。これは、式で表すと

$$(a_j)^2 + (i a_j)^2 = a_j^2 - a_j^2$$

= 0

[2 - 20]

となって消滅してしまう。このままでは全空間 H が実空間と虚空間に分かれて も、それらは直ぐに消滅して元に戻ってしまうということだ。実は、これはラ プラス演算子 s が純虚数の場合に起こる現象だ。空間が存在しているという事 実を考え合わせれば、ラプラス演算子 s が純虚数であろうはずがない。では何 か思慮が足りないのか。そう、そのとおり。実際にはラプラス演算子 s は複素 数である。これは、全空間の中には複素空間も存在していることを意味してい るのだ。実空間と虚空間の間に薄い膜のような、複素空間という隔たりがある といえないか。確かに複素数は実数と虚数で作られているのだから、そのよう に捉えることができる。これを基素関数に導入することは簡単だ。それは

$$ga_{j} = c \omega_{j} exp(\pm i \sigma_{j} \tau) \cos \omega_{j} \tau \qquad [2 - 21]$$

と、σの前に虚数の記号iを入れるだけで良い。ajの左下付きの半角文字gはその式が複素数であることを表す記号である。さてこれで三種類の基素関数が得られた。これらを下に現存している全空間は

$$\mathbf{H}^{9} = [\mathbf{R}^{3} \mid \mathbf{G}^{3} \mid \mathbf{I}^{3}]$$

扣邮款

[2 - 22]

と表現される。Hの右肩の9は、全空間が9次元であることを意味する。そして G³は複素空間、つまりギャップ空間を表す。先の議論で分かるとおり、三つの空間は完全分裂したのではなく、G³で緩やかに繋がっていると言える。この意味において、当初の全空間は爆発したとは言えず、どちらかといえば相転移したと言った方が変化を上手く表現しているだろう。これらを

$$\mathbf{H} \xrightarrow{\mathsf{I} \to \mathsf{H} \to \mathsf{I}} \mathbf{H}^{\mathsf{9}} = [\mathbf{R}^3 \mid \mathbf{G}^3 \mid \mathbf{I}^3]$$

$$[2 - 23]$$

と表記する。

では空間の相転移は簡単に起こったのだろうか。いやそんなことはない。多 分何度も式[2-20]で表される事象を経験した末に私達の宇宙は生まれたのだろ う。この点に付いては後ほど触れよう。

さて、基素関数の拡張はまだ残っている。 式[2 - 17]の a_j の単位は ω が [rad¹s⁻¹]だから[m¹s⁻²rad¹]という加速度の単位を持っている。そこで a_j の積分 を繰り返せば、速度や長さを表す式が現れるのではないかと思われる。実際、 τ について積分すればそれらが得られる。例えば

$$\mathbf{a}^{\pm}_{\mathbf{j}} = \pm \mathbf{c} \,\omega_{\mathbf{j}} \exp(\pm \sigma_{\mathbf{j}} \,\tau) \cos \omega_{\mathbf{j}} \,\tau \qquad [2 - 24]$$

だから

$$\mathbf{v}_{j}^{+} = \int \mathbf{a}_{j}^{+} \mathbf{d} \tau$$

$$= c \omega_{j} \exp(+\sigma_{j} \tau) [\omega_{j} \sin \omega_{j} \tau + \sigma_{j} \cos \omega_{j} \tau] / (\sigma_{j}^{2} + \omega_{j}^{2}) \qquad [2 - 25]$$

$$\mathbf{v}_{j}^{-} = \int \mathbf{a}_{j}^{-} \mathbf{d} \tau$$

 $= \mathbf{c}\omega_{j}\exp(-\sigma_{j}\tau)[\omega_{j}\sin\omega_{j}\tau - \sigma_{j}\cos\omega_{j}\tau]/(\sigma_{j}^{2} + \omega_{j}^{2}) \qquad [2 - 26]$

が求まる。ここでは不定積分によって現れる定数成分は省略する。また

$$[\omega_{j}\sin\omega_{j}\tau + \sigma_{j}\cos\omega_{j}\tau] = \sin(\omega_{j}\tau + \Delta \delta_{a+}) \cdot (\sigma_{j}^{2} + \omega_{j}^{2})^{1/2}$$

$$\Delta \delta_{a+} = \tan^{-1}(+\sigma_{j}/\omega_{j})$$

$$[2 - 27]$$

 $[\omega_{j}\sin\omega_{j}\tau - \sigma_{j}\cos\omega_{j}\tau] = \sin(\omega_{j}\tau + \Delta \delta_{a}) \cdot (\sigma_{j}^{2} + \omega_{j}^{2})^{1/2}$

 $\Delta \delta_{a_{-}} = \tan^{-1} (-\sigma_j / \omega_j)$ [2 - 28]

となる。式[2 - 25]、[2 - 26]を正負の混同がないよう注意を払うということを前 提に式[2 - 27]、[2 - 28]を入れて一つの式に纏めると、速度 v[±]iは

 $\mathbf{v}^{\pm}{}_{\mathbf{j}} = \mathbf{c} \,\omega_{\mathbf{j}} \mathbf{e}^{\pm \sigma}{}_{\mathbf{j}}^{\tau} \, \sin(\omega_{\mathbf{j}} \,\tau + \Delta \,\delta_{\mathbf{a}\pm}) / (\sigma_{\mathbf{j}}^{2} + \omega_{\mathbf{j}}^{2})^{1/2}$

 $\Delta \delta_{\mathbf{a}\pm} = \tan^{-1} (\pm \sigma_j / \omega_j)$ [2 - 29]

と書くことができる。なおこの正弦関数は余弦関数で表すことも出来る。同様 にして空間を表す距離 $\mathbf{r}^{\pm}_{\mathbf{j}}$ や、そこでの動き難さを表す動難度 $\mathbf{b}^{\pm}_{\mathbf{j}}$ も得られるが ここでは書かない。

次に複素空間での基素関数を拡張してみよう。さて指数関数は

 $\exp(\pm i \sigma_j \tau) = \cos \sigma_j \tau \pm i \sin \sigma_j$

であって、この場合実数と虚数の和や差は、実際には為しようがない。つまり、 複素式には実数の大きさと虚数の大きさが表されるだけで、両者の和を採ろう が差を採ろうが式を構成するに当たっては問題ない。このような考え方を踏ま えて式[2-21]のgajを積分する。

 $_{g}\mathbf{v}_{j}^{+} = \int _{\mathbf{c}} \mathbf{a}_{j}^{+} \mathbf{d} \tau$

$$= c \omega_j \exp(+i \sigma_j \tau) [\omega_j \sin \omega_j \tau + i \sigma_j \cos \omega_j \tau] / (-\sigma_j^2 + \omega_j^2) \qquad [2 - 30]$$

 $_{g}v_{j}^{-} = \int _{c}a_{j}^{-}d\tau$

 $= c \omega_{j} \exp(-i \sigma_{j} \tau) [\omega_{j} \sin \omega_{j} \tau - i \sigma_{j} \cos \omega_{j} \tau] / (\sigma_{j}^{2} + \omega_{j}^{2}) \qquad [2 - 31]$

さあ、式[2 - 32]をよく見て頂きたい。ここには $(-\sigma_j^2 + \omega_j^2)$ という量が現れた。 これは深く考察しなければならない。後の議論で分かることだが、今のところ はそのまま受け入れよう。

3, 変数の意味付け

§3-(1) ω、σ、τの意味

式 **a**[±]**j** はラプラス変換を利用して得られた。ラプラス変換と一口にいっても 色々な事象があり、各々その事象に合った変換方法がある。そして、それらの 変換方法は何かの定理で裏打ちされている。

さて、ここで議論している変換方法は、ブロムウィッチ=ワグナー(B=W)定理 の下に成り立っていると考えられる(山田直平、国枝壽博/ラブラス変換・演算子法/応用数学講座 10/コ ロナ社)。この定理は半径 \pounds が無限大の B=W 円を置いて構成されているが、今こ こでそれを議論しようというのではない。必要なものは B=W 円だ。この円は演 算子 s = (Σ , i Ω)で表される s 平面上に存在している。また、半径 \pounds は \pounds = (σ , i ω)で表される。ところで、複素式 ga[±]j では σ j の前に虚数 i が付いていた。そ れに ga[±]j は三つの式で構成された次元数 3 を持っている。そこでまず、次元数 を整合させなければならない。それには B=W 円が演算に必要なだけ、つまり三 つ存在すると考えるべきだろう。この B=W 円の半径 \pounds は

 $\mathcal{L} = (\sigma_{j}, i\omega_{j}) \quad \because \sigma_{j} = \mathcal{L} \cos \theta_{j}, \quad \omega_{j} = \mathcal{L} \sin \theta_{j} \quad [3-1]$

と表される。この \pounds を自乗すると $\sigma_j \perp i \omega_j$ だから

$$\mathcal{L}^{2} = \sigma_{j}^{2} - \omega_{j}^{2} \qquad [3 - 2]$$

となるが、これが式[2-32] ga⁺j で現れた($-\sigma_j^2 + \omega_j^2$) = $-(\sigma_j^2 - \omega_j^2)$ の意味で ある。これに依って s 空間はギャップ空間の存在を保証し、ギャップ空間での 虚軸の採り方は s 空間によって縛られず、 σ_j に虚数 i が付いていても問題ない と理解できる。また、 σ_j と ω_j の関係を実空間内に発展させ、

 $\mathcal{L} = (\sigma_j, \omega_j) \qquad \geq \mathcal{L} \subset \qquad \mathcal{L}^2 = \sigma_j^2 + \omega_j^2$

を成り立たせることもできる。この三つの円の組み合わせは球として捉えることもできる[Fig.B=W]。これを擬ブロムウィッチ=ワグナー球といおう。そこで

$$\mathbf{w} = (\sigma_j, \omega_j) \qquad \because \sigma_j = \mathbf{w} \cos \theta_j, \quad \omega_j = \mathbf{w} \sin \theta_j \qquad [3-3]$$

$$\mathbf{w}^2 = \sigma_j^2 + \omega_j^2 \quad \because \sigma_j \perp \omega_j, \quad \omega_j = (\sigma_k + \sigma_n), \quad \mathbf{j} \neq \mathbf{k} \neq \mathbf{n}$$

$$= \sigma_j^2 + \sigma_k^2 + \sigma_n^2 \qquad \because \omega_j = (\sigma_k, \sigma_n) \qquad [3-4]$$

と書き直す。これは実空間中の球の方程式である。つまり、 σ_jとω_jはこのよう

- 11 -

な関係の下に成り立っているということだ。

ところで、 *τ* の意味付けは時間の概念を見直さなくてはならない。そもそも 時間とは純然たる物理量なのだろうか。確かに未来を予測するにはなくてはな らない尺度ではある。しかし過去へは戻れない事実からして、時間の次元が存 在すると決め付けることはできない。また、未来を予測できるとは言っても、 未来へ行って見て来ることもできない。過去はあくまでも記憶の中に留めて置 くものであるし、未来は「今」の積み重ねで築き上げていくものだ。では現実 の状態の変化を物理的にはどう捉えるべきであろうか。それは時間の流れで計 るものではなく、運動量の存在や変化の下に量られるものではないだろうか。 この意味に於いて、時間とは運動の変化を量るために持ち込まれた計量である といえる。夢のない話だがこれが現実だ。

ところで、時間次元がないとするなら、ここでの議論は無意味になってしま う恐れがある。確かにそのとおりだが、未来を予測する計量を数学的手法とし て、ここでも上手く活用したという言い訳はできる。

では τ を何と説明すべきか。それは運動量を量子化した場合に現れる単位素 量だとはいえないか。ただし、これは時間の単位を持っている。これでは先程 来の議論と矛盾しているように見える。しかし τ はあくまでも式の表面に現れ ているのではなく、三角関数や指数関数の中に隠れて存在しているものである。 この意味に於いて時間を数学的手法として上手く活用したという言い訳は成り 立つ。具体的には τ を(または τ の最小値を)プランクの時間 t_{pl} だとするのが妥 当であろう。この理由は半径 w との絡みもあって後程述べる。

$\tau = 5.390557921 \times 10^{-44}$ [s¹] (プランク時間) [3-5]

§3-(2) 基素関数の拡張(b)

もう少し基素関数に就いて議論を進めたい。これはそれぞれの三次元空間中 に存在するベクトルであると直ぐに理解される。すると基素関数のωjτという 量はそれぞれの次元軸とベクトルとの為す角であると分かる。

$\mathbf{a} = (a_1, a_2, a_3)$

$$\mathbf{a}_{\mathbf{j}} = \mathbf{c}\,\omega_{\mathbf{j}}\mathbf{e}^{\pm\,\sigma_{\mathbf{j}}\,\tau}\,\mathbf{\cos}\,\omega_{\mathbf{j}}\,\tau \qquad [\mathbf{3} - \mathbf{6}]$$

ここでは a_j の上付き正負の符号は省略した。言うまでもないが、式[3-6]は各次 元上に乗ったベクトルの成分である。もしこのベクトルを平面に置いたとする と、 $\cos \omega \tau$ と $\sin \omega \tau$ の二つの成分で表されることになる[Fig.3]。 よって、式[3-6]に対応するもう一方の成分を

$$\mathbf{a}_{j}^{*} = \mathbf{c}\,\omega_{j}\mathbf{e}^{\pm\,\sigma}{}_{j}\,^{\tau}\sin\omega_{j}\,\tau \qquad [3-7]$$

と書こう。 a_i と a^*_i を一対としたベクトルを

$$A_j = (aj, a_j^*)$$
 [3 - 8]

とする。a^{*}iをa_iのゴーストと言おう。またa^{*}iで構成されるベクトルを

$$\mathbf{a}^* = (a_1^*, a_2^*, a_3^*)$$
 [3 - 9]

と表そう。以上より

$$A = (a, a^*)$$
 [3 - 10]

という量の存在を想定する。

さて \mathbf{a}_i を積分した \mathbf{v}_i を見ると、 ω_i と σ_i は直交しているため

$$\mathbf{v}_{j} = \mathbf{c} \,\omega_{j} \mathbf{e}^{\pm \sigma}_{j} \,^{\tau} [\,\omega_{j} \sin \omega_{j} \,\tau \pm \sigma_{j} \cos \omega_{j} \,\tau \,] / (\,\sigma_{j}^{2} + \omega_{j}^{2})$$

$$= \mathbf{c} \mathbf{e}^{\pm \sigma}_{j} \,^{\tau} [\,\omega_{j}^{2} \sin \omega_{j} \,\tau \pm \omega_{j} \,\sigma_{j} \cos \omega_{j} \,\tau \,] / (\,\sigma_{j}^{2} + \omega_{j}^{2})$$

$$= \mathbf{c} \mathbf{e}^{\pm \sigma}_{j} \,^{\tau} \,\omega_{j}^{2} \sin \omega_{j} \,\tau / (\,\sigma_{j}^{2} + \omega_{j}^{2}) \qquad \because \omega_{j} \perp \sigma_{j} \qquad [3 - 11]$$

となる。

もしこのベクトル a が単位素ベクトルだとすると、その各次元上の成分 aj は 全て同じ大きさで、これを素成分 aj と言おう。すると a は単位空間(単位立方体) の対角線上にしか存在し得ないベクトルだといえる。この場合、a の各次元に対 して為す角度Θeは

 $\Theta_{e} = \cos^{-1} [(1/3)^{1/2}]$

= 0.9553166182 [rad] (54.73561032°) [3 - 12]

$$\Theta_{e} = \delta_{1} = \delta_{2} = \delta_{3} \qquad [3 - 13]$$

となる(証明は省略)。実は、これは電子の傾き角度でもある。

4, 光速度 c とプランク定数 h の同時対導出

§4-(1) 全空間 H⁹の生まれ方

では基素関数の変数を色々と操作してみよう。まず

$$\omega_{j}\tau = \mathbf{w}\tau\sin\theta_{j}, \qquad \sigma_{j}\tau = \mathbf{w}\tau\cos\theta_{j} \qquad [4-1]$$

と直すことができる。これを基素関数に代入すると式[3-12]は

$$\mathbf{a}_{j} = \mathbf{c} \operatorname{wsin} \theta_{j} \exp(\pm \mathbf{w} \tau \cos \theta_{j}) \cos(\mathbf{w} \tau \sin \theta_{j})$$

$$[4 - 2]$$

 $_{ga_{j}} = c w \sin \theta_{j} exp(\pm i w \tau \cos \theta_{j}) \cos(w \tau \sin \theta_{j})$

$$= c \operatorname{wsin} \theta_{i} [\cos(w \tau \cos \theta_{i}) \pm i \sin(w \tau \cos \theta_{i})] \cos(w \tau \sin \theta_{i}) \quad [4 - 3]$$

となる。w τ は角度の次元を持っているのだが、これは何がしかの定数だと予測 される。これに就いては後ほど調べる。そこで、とりあえず w τ にはゼロから 無限大までの数値を用意しておく。 次に $\omega_j \tau \ge \theta_j$ の値を用意したいが $\omega_j \tau$ 、 w τ、 θ_j すべてが従属関係にあるため一様な値の指定は出来ない。そこで $\omega_j \tau$ の値を一つずつ指定し、それに基づき θ_j の値を算出する。

$$\theta_{j} = \sin^{-1} \left(\omega_{j} \tau / W \tau \right)$$

$$[4 - 4]$$

ところで、前章で導出したとおり $\omega_{i\tau} = \Theta_e$ なのだから

$$\theta_{i} = \sin^{-1} \left(\Theta_{e} / w \tau \right)$$

$$[4 - 5]$$

である。これをもとに M.S.エクセルに依って基素関数 aj 及び gaj を数値演算させたものを[Sheet1]に載せる。なおこの数値演算には、c 及び単独で存在する w の値は無視した。

この表よりとても興味深い現象が見て取れる。

まずギャップ空間ベクトル成分 gajの実部は、θjがゼロからπ/2に向かうに つれて振動しながら漸増し、値[0.577350269 c w]に到達する。θjがゼロに近い 場所では発振していると言って差し支えない。これが ギャップ空間の生まれ 方である[Graph1]。

 ga_j の虚部は実部の位相とは逆転していて、実部と同様に発振しながら漸増するが、 $\theta_j = \pi/2$ のところでは消滅してしまう[Graph2]。

[Graph5]は ga_j の実部と虚部の従属関係を表している。グラフ機能の優れたソフトウェアーを利用して 3-D グラフを作るまでもなく、 ga_j は θ 軸を中心にした

螺旋回転を描いていることが分かる。

 $a_j O e^-$ 側は、 $\theta_j = 0$ でゼロとなっていることは e^+ 側と同じであるが、 θ_j が $\pi / 2$ に向かっては急増せずに値[0.577350269 c w]に落ち着く[Graph4]。

このように実空間 **R**³だけを捉えても二つの現象が同時に進行している。これ がビッグバン理論とは異なる点である。

また、虚空間ベクトル成分 i ajの様子は aj と同じである。ビッグバンは虚空間 側でも起こったのである。ただしここではビッグバンとはいわない。あくまで もこれら全ての現象を一つのものと捉え、全空間 H の相転移であると言おう。 この後、私達が知っている全空間 H⁹が生まれたのである。

§4−(2) cとħの導出

実は、前セクションの数値演算は $\omega_j \tau = \Theta_e$ の場合だけではなく、色々な数値 を $\omega_j \tau$ に当てはめて行った。その理由は B=W 円の半径 w の値を決定するよう なヒントが掴めないかと思ったからである。何度も数値演算を繰り返している 内に、偶然にも w τ =48.9 辺りに光速度 c の値のヒントになるものが出て来た。

パソコンでも一年程度トライアンドエラーを繰り返したのだから、もし人間 が手計算をしたとするなら 30 年から 50 年は掛かったであろう。ほんの数年で パソコンに装備する演算素子の能力が 100 倍、1000 倍と高まったことや、素晴 らしいソフトウェアーの開発がなされた事を驚きに思うし、感謝する。実は私 が以前持っていたパソコンは、石器時代のもので使い物にならなかった。

では式[4-2]を使って実際に c の値を探してみよう。

$$\mathbf{a}^{\pm}_{\mathbf{j}} = \mathbf{c}\,\omega_{\mathbf{j}} \,\mathbf{e}^{\pm\,\rho}_{\mathbf{j}}\,\cos\,\delta_{\mathbf{j}}$$

 $= c w \sin \theta_j exp(\pm w \tau \cos \theta_j) \cos(w \tau \sin \theta_j) \qquad [4 - 2]$

ここでも前セクションと同様に変数の取り方に注意する。ただしここでは先 に、 $\omega_j \tau = \delta_j [c \ 0 \ Dhericological heritonic heriton] = \delta_j [c \ 0 \ Dhericological heriton heriten heriton heriton$

いまここで

c = 299792458 $[m^1 \cdot s^{-1}]$, $\hbar = 1.054571596 \times 10^{-34}$ $[J \cdot s^{-1}]$

 $\hbar / c = 3.517672202 \times 10^{-43} [J^1 \cdot m^{-1} \cdot s^2]$

を採用する。

結果はご覧の通り驚くべきものであった。以下に各 Case の最重要部分を列挙 する。

Case① 条件① w τ = 48.87668 $\delta_j = 0.000000000553261063 \pi / 2$ $\theta_j = 1.77807 \times 10^{-13}$

> 解① $a_{j}^{+} = 299792458.2 \text{ c w}$ $a_{j}^{-} = 1.05457 \times 10^{-34} \text{ c w}$ $a_{j}^{-} \swarrow a_{j}^{+} = 3.51767 \times 10^{-43}$

- **Case**② 条件② w τ = 48.886015 $\delta_j = \Theta_e$ $\theta_j = 0.01954296$
 - 解② $a_{j}^{+} = 1.90228 \times 10^{+19} \text{ c w}$ $a_{j}^{-} = 6.6916 \times 10^{-24} \text{ c w}$ $a_{j}^{-} \swarrow a_{j}^{+} = 3.51767 \times 10^{-43}$
- **Case**③ 条件③ w τ = 48.901915 δ_j = 0.9999999999996476 π / 2 θ_j = 0.032126893
 - 解③ $a_{i}^{+} = 299801584.4$ c w $a_{i}^{-} = 1.0546 \times 10^{-34}$ c w

 $a_i / a_i = 3.51767 \times 10^{-43}$

これらはパソコンの演算能力が限界に達したためここまでの値しか出せなかった。しかし、何と言っても見事に光速度 c (a+j 側)の値が導出された。そればかりではなく、同じ条件で**h**(a⁻j 側)の値まで導き出されているではないか。この c と**h**の同時対導出によってギャップ空間理論の正当性は裏打ちされた。

だが見直さなければならないこともある。それは **Case**②で c と**h**が本当の値 とはかなりの開きがあるということと、c w の値が考慮されていないことだ。

まず c と \mathbf{h} の説明をする。実は、これらの「値」というのは人間が自分の尺度で測ったもので、ある単位の下に与えられた数値でしかなく、物理的には絶対的なものではない。その意味に於いては c = 1、 \mathbf{h} = 1 と置いても差し支えなく、事実これは頻繁に行われている操作だ。このように考えれば、c も \mathbf{h} も単なる「記号」として良い。では何が重要かというと、比 \mathbf{h} /cが正しく表され

ていることである。こう考えれば、Case②の数値の不一致は大きな問題ではないと分かる。また、wの値が如何なるものであっても、比 $a_j/a_j = \hbar/c$ が成立することは自明である。以上によって基素関数を書き直すと

 $\mathbf{a}_{j} = \mathbf{c}_{\omega_{j}} \mathbf{e}_{j} \cos \delta_{j}$ $\varepsilon_{j} = \hbar_{\omega_{j}} \mathbf{e}_{j} \cos \delta_{j}$ [4-6] という限定された式になる。

上記考察は c と f との単位を無視して行われた。そこで式[3 - 11]の+側を c とし、一側を f と考えそれを f^{-i} という記号で表す。

$$\mathbf{v}_{j}^{+} = \mathbf{c} \,\omega_{j}^{2} \,\mathbf{e}_{j}^{+\rho} \cos \delta_{j} / (\sigma_{j}^{2} + \omega_{j}^{2})$$

$$[4 - 7]$$

$$\hbar^{-}_{j} = \hbar \omega_{j}^{2} e^{-\rho_{j}} \cos \delta_{j} / (\sigma_{j}^{2} + \omega_{j}^{2})$$
[4 - 8]

この式は

$$\omega_{j} = w \sin \theta_{j} \qquad \sigma_{j} = w \cos \theta_{j} \qquad \therefore (\sigma_{j}^{2} + \omega_{j}^{2}) = w^{2} \qquad [4 - 9]$$

であるから

$$\mathbf{v}_{j} = \mathbf{c} \sin^{2} \theta_{j} \mathbf{e}^{\rho_{j}} \cos \delta_{j} \qquad [4 - 10]$$

$$\mathbf{h}^{-}_{\mathbf{j}} = \mathbf{h} \sin^2 \theta_{\mathbf{j}} \mathbf{e}^{-\rho_{\mathbf{j}}} \cos \delta_{\mathbf{j}}$$
[4 - 11]

と直される。この式[4 - 10]、[4 - 11]を使って数値演算する。 この結果も[Case④、Case⑤、Case⑥]に表す。また先程と同様に纏める。

- **Case**④ 条件④ w τ = 48.87668 δ_{j} = 0.00001312066853 π / 2 θ_{j} = 4.21671×10⁻⁷
 - 解④ $v_{j} = 299792458 c$ $h_{j} = 1.05457 \times 10^{-34} h$ $h_{j} / v_{j} = 3.51767 \times 10^{-43}$
- **Case**⑤ 条件⑤ w τ = 48.886015 $\delta_{j} = \Theta_{e}$ $\theta_{j} = 0.01954296$

解⑤
$$v_{j} = 3.71738 \times 10^{+17} \text{ c}$$
 $h_{j} = 1.30765 \times 10^{-25} \text{ h}$
 $h_{j} / v_{j} = 3.51767 \times 10^{-43}$

Case⑥ 条件⑥ w τ = 48.901915 δ_{i} = 0.999999999999999292 $\pi / 2$

- 17 -

$\theta_{i} = 0.032126893$

解⑥
$$v_{j} = 299791839.4 c$$
 $h_{j} = 1.05457 \times 10^{-34} h$

 $\hbar_{j}^{-}/v_{j}^{+} = 3.51767 \times 10^{-43}$

さて、ベクトル a が単位立方体の対角線を為す単位ベクトルだとすると、それ の持つ角度は全て同一で

$$\Theta_{e} = \delta_{1} = \delta_{2} = \delta_{3} \qquad [3 - 13]$$

となることが分かっている。このような厳しい条件を Case②と Case⑤は満たしている。

いまや式[3-11]は

$$\Re = [c_{(+)}, h_{(-)}]$$
 [4 - 12]

となる R で書き換えることができる。この場合の基素関数は

 $\mathbf{f}(\theta_{j}) = \mathcal{R} \sin^{2} \theta_{j} \mathbf{e}^{\pm \rho_{j}} \cos \delta_{j}$

$$= (c \sin^2 \theta_j e^{+\rho_j} \cos \delta_j, \quad \hbar \sin^2 \theta_j e^{-\rho_j} \cos \delta_j) \qquad [4-13]$$

と表される。

実のところ、重要なのは比 \hbar / c であるという考えに立てば $e^{+\circ}_j$ と $e^{-\circ}_j$ に注目するだけでよい。この場合 $e^{+\circ}_j$ をcの種、 $e^{-\circ}_j$ を \hbar の種と言おう。得られる結果を挙げると

- **Case**⑦ 条件⑦ w τ = 48.87668 δ_{j} = 0.0000000000553261063 $\pi / 2$ θ_{j} = 1.77807×10⁻¹³
- **Case**⑧ 条件⑧ $w \tau = 48.886015$ $\delta_j = \Theta_e$ $\theta_j = 0.01954296$

Case⑨ 条件⑨ w τ = 48.901915 δ_{j} = 0.999999999999999999999292 π / 2 θ_{j} = 0.032126893

$$e^{-\rho} i / e^{+\rho} i = 3.51767 \times 10^{-43}$$

となる**[Case⑦、Case⑧、Case⑨]**。これは**[48.87668**≦ w τ ≦48.901915]の範 囲に於いて、**[0**≦ δ_j ≦ π / 2]のいずれの場合にも

$$c e^{+\rho_j} = 1.68606 \times 10^{+21} c$$
 $\hbar e^{-\rho_j} = 5.931 \times 10^{-22} h$

$$e^{-\rho_j} / e^{+\rho_j} = 3.51767 \times 10^{-43}$$
 $e^{-\rho_j} \cdot e^{+\rho_j} = 1$

という定まった値を探し出せるということだ。しかしながら、これらが本質的 な数値だと認めるには注意が必要だ。何故ならプランク定数を「エルグ」表記 したり「eV」表記したりすれば当然 $w \tau$ の値も変わり、そして比h / cも変わ るからである。

ところで、数値で**h**が得られただけでは不十分である。当然、**h**を導出する 理論的考察もしなければならない。そこで空間の基素関数と同じ手法を採って **h**を導き出す。ただし等価回路に置いた「空間 **X**」は「慣性モーメント**T**」に 置き換えなければならない[Fig.4]。帰還回路は**i h**t になる。こうして得られ た基素関数が

$$\varepsilon_{j} = \hbar \omega_{j} e^{-\sigma_{j}\tau} \cos \omega_{j}\tau \qquad [4-14]$$

で、これを積分したものは角運動量となり

である。上式をベクトル表現すれば式[4-8]になる。

$$\mathbf{\tilde{h}}_{j} = \mathbf{\tilde{h}} \omega_{j}^{2} \mathbf{e}^{-\rho}{}_{j} \cos \delta_{j} / (\sigma_{j}^{2} + \omega_{j}^{2})$$

$$[4 - 8]$$

§4-(3) 式のまとめ

以下に全ての式を列挙しておく。まず実空間 R³でのスカラー表現は

$$\mathbf{a}^{+}_{\mathbf{j}} = \mathbf{c}\,\omega_{\mathbf{j}} \exp(+\,\sigma_{\mathbf{j}}\,\tau\,) \cos\,\omega_{\mathbf{j}}\,\tau \qquad [4-16]$$

- 19 -

$$\mathbf{v}^{+}_{\mathbf{j}} = \mathbf{c}\,\omega_{\mathbf{j}}\mathbf{e}^{+\,\sigma_{\mathbf{j}}\,\tau} \,\sin(\omega_{\mathbf{j}}\,\tau + \Delta \,\delta_{\mathbf{a}\pm}) / (\,\sigma_{\mathbf{j}}^{2} + \omega_{\mathbf{j}}^{2})^{1/2}$$

$$\Delta \,\delta_{\mathbf{a}+} = \tan^{-1}\,(+\,\sigma_{\mathbf{j}}/\omega_{\mathbf{j}}\,) \qquad [4 - 17]$$

$$\mathbf{r}^{+}_{\mathbf{j}} = \mathbf{c}\,\omega_{\mathbf{j}}\mathbf{e}^{+\,\sigma_{\mathbf{j}}\,\tau} [2\,\omega_{\mathbf{j}}\,\sigma_{\mathbf{j}}\,\sin\omega_{\mathbf{j}}\,\tau - (\,\sigma_{\mathbf{j}}^{2} - \omega_{\mathbf{j}}^{2})\cos\omega_{\mathbf{j}}\,\tau \,] / (\,\sigma_{\mathbf{j}}^{2} + \omega_{\mathbf{j}}^{2})^{2}$$

$$= c \omega_{j} e^{+\sigma_{j}\tau} \cos(\omega_{j}\tau - \Delta \delta_{r_{+}}) / (\sigma_{j}^{2} + \omega_{j}^{2})$$
$$\Delta \delta_{r_{+}} = \tan^{-1} (-2 \omega_{j}\sigma_{j} / (\sigma_{j}^{2} - \omega_{j}^{2})) \qquad [4 - 18]$$

 $\mathbf{b}^{+}_{\mathbf{j}} = \mathbf{c} \,\omega_{\mathbf{j}} \mathbf{e}^{+\sigma_{\mathbf{j}}\tau} [\,\omega_{\mathbf{j}}(\omega_{\mathbf{j}}^{2} - 3 \,\sigma_{\mathbf{j}}^{2}) \mathbf{sin} \,\omega_{\mathbf{j}} \tau + \sigma_{\mathbf{j}}(3 \,\omega_{\mathbf{j}}^{2} - \sigma_{\mathbf{j}}^{2}) \mathbf{cos} \,\omega_{\mathbf{j}} \tau \,]$ $/(\sigma_{\mathbf{j}}^{2} + \omega_{\mathbf{j}}^{2})^{3}$

$$= \mathbf{c} \omega_{\mathbf{j}} \mathbf{e}^{+\sigma_{\mathbf{j}}\tau} \sin(\omega_{\mathbf{j}}\tau + \Delta \delta_{\mathbf{b}+}) / (\sigma_{\mathbf{j}}^{2} + \omega_{\mathbf{j}}^{2})^{3/2}$$

 $\Delta \delta_{b_+} = \tan^{-1} \left[+ (3\omega_j^2 \sigma_j - \sigma_j^3) / (\omega_j^3 - 3\omega_j \sigma_j^2) \right]$ [4 - 19] と表される。なお、以前省略したのだがこれらには全て正と負の解が存在する。 次にベクトル表現をする。ただし右肩に「*」が付いた式はゴーストである。

$$a_{j} = c \omega_{j} e^{+\rho_{j}} \cos \delta_{j}$$

$$a^{*}_{j} = c \omega_{j} e^{+\rho_{j}} \sin \delta_{j}$$

$$[4 - 20]$$

$$v_{j} = c \omega_{j}^{2} e^{+\rho_{j}} \cos \delta_{j} / (\sigma_{j}^{2} + \omega_{j}^{2})$$

$$v^{*}_{j} = c \omega_{j}^{2} e^{+\rho_{j}} \sin \delta_{j} / (\sigma_{j}^{2} + \omega_{j}^{2})$$

$$[4 - 21]$$

$$r_{j} = c \omega_{j}^{3} e^{+\rho_{j}} \cos \delta_{j} / (\sigma_{j}^{2} + \omega_{j}^{2})^{2}$$

$$r^{*}_{j} = c \omega_{j}^{3} e^{+\rho_{j}} \sin \delta_{j} / (\sigma_{j}^{2} + \omega_{j}^{2})^{2}$$

$$[4 - 22]$$

$$b_{j} = c \omega_{j}^{4} e^{+\rho_{j}} \cos \delta_{j} / (\sigma_{j}^{2} + \omega_{j}^{2})^{3}$$

$$\mathbf{b}_{j}^{*} = \mathbf{c}\,\omega_{j}^{4}\,\mathbf{e}^{+\,\rho}_{j}\,\sin\delta_{j}/(\sigma_{j}^{2}+\omega_{j}^{2})^{3} \qquad [4-23]$$

となる。虚空間 **I**³の式は **R**³の式の頭に虚数 i を付けるだけなので、ここでは省略する。

そして慣性モーメントの等価回路から得られた基素関数を以下に列記する。 実慣性モーメント空間 R **T**³ でのスカラー表現は

$$\varepsilon_{j} = \hbar \omega_{j} e^{-\sigma_{j}\tau} \cos \omega_{j}\tau \qquad [4 - 24]$$

$$\begin{split} \hbar^{-}_{j} &= \hbar \omega_{j} e^{-\sigma_{j}\tau} \sin(\omega_{j}\tau + \Delta \delta_{a_{-}}) / (\sigma_{j}^{2} + \omega_{j}^{2})^{1/2} \\ \hbar \tilde{\iota} \mathcal{L} \quad \Delta \delta_{a_{-}} &= \tan^{-1} (-\sigma_{j} / \omega_{j}) \end{split}$$

$$[4 - 25]$$

$$\phi^{-}_{j} = \hbar \omega_{j} e^{-\sigma_{j}\tau} \cos(\omega_{j}\tau - \Delta \delta_{r_{-}}) / (\sigma_{j}^{2} + \omega_{j}^{2})$$

$$\hbar \mathcal{E} \cup \Delta \delta_{r_{-}} = \tan^{-1} (+2\omega_{j}\sigma_{j}/(\sigma_{j}^{2} - \omega_{j}^{2}))$$

$$[4 - 26]$$

$$\chi^{-}_{j} = \hbar \omega_{j} e^{-\sigma_{j}\tau} \sin(\omega_{j}\tau + \Delta \delta_{b-}) / (\sigma_{j}^{2} + \omega_{j}^{2})^{3/2}$$

$$\approx \hbar \omega_{j} e^{-\sigma_{j}\tau} \sin(\omega_{j}\tau + \Delta \delta_{b-}) / (\omega_{j}^{3} - 3\omega_{j}\sigma_{j}^{2}) [4 - 27]$$

た となる。

上式のベクトル表現は

$$\varepsilon_{j} = \hbar \omega_{j} e^{-\rho_{j}} \cos \delta_{j}$$

$$\varepsilon_{j}^{*} = \hbar \omega_{j} e^{-\rho_{j}} \sin \delta_{j}$$

$$f_{j} = \hbar \omega_{j}^{2} e^{-\rho_{j}} \cos \delta_{j} / (\sigma_{j}^{2} + \omega_{j}^{2})$$

$$f_{j}^{*} = \hbar \omega_{j}^{2} e^{-\rho_{j}} \sin \delta_{j} / (\sigma_{j}^{2} + \omega_{j}^{2})$$

$$\psi_{j} = \hbar \omega_{j}^{3} e^{-\rho_{j}} \cos \delta_{j} / (\sigma_{j}^{2} + \omega_{j}^{2})^{2}$$

$$\psi_{j}^{*} = \hbar \omega_{j}^{3} e^{-\rho_{j}} \sin \delta_{j} / (\sigma_{j}^{2} + \omega_{j}^{2})^{2}$$

$$\chi_{j} = \hbar \omega_{j}^{4} e^{-\rho_{j}} \cos \delta_{j} / (\sigma_{j}^{2} + \omega_{j}^{2})^{3}$$

$$\chi_{j}^{*} = \hbar \omega_{j}^{4} e^{-\rho_{j}} \sin \delta_{j} / (\sigma_{j}^{2} + \omega_{j}^{2})^{3}$$

$$(4 - 31]$$

[4 - 31]

である。虚慣性モーメント空間 $_{I}$ Ψ^{3} の式は、 $_{R}$ Ψ^{3} の式の頭に虚数 i を付けるだけ で良いので省略する。これらも非常に多くの内容を含んでいる。

- ① ε₁をベクトル、或いはその一つの成分として捉えれば「力のモーメント」 である。 *ε* jのスカラー量を求めると、これは「**エネルギー**」を表す。
- ② 方」も同様にベクトル量ならば「角運動量」であり、そのスカラー量は「プ ランク定数」を表す。
- ③ *φ*_jはベクトル量としては「慣性モーメント」である。スカラー量としては

不明。

④ χ_iは残念ながらどちらとも不明。

実は、ギャップ空間 **G**³中の基素関数とギャップ慣性モーメント空間 **cΨ**³中の 基素関数は全く同じものである。この理由は等価回路の説明をどのようにしよ うが、実際には一つの相転移作用から全てが表現されているのだから当然だ。 そこで、式を表現するために

$$\Re = [c_{(+)}, h_{(-)}]$$
 [4 - 32]

を利用する。

このスカラー表現は以下のようになる。ただし以下の簡略式は e⁻ 側だけのものであることを注意する。

$$g \mathcal{M}^{\pm}_{j} = \mathcal{R} \omega_{j} e^{\pm i \sigma_{j} \tau} \cos \omega_{j} \tau \qquad [4 - 33]$$

$$g \mathscr{H}^{\pm}{}_{j} = \mathscr{R} \omega_{j} e^{\pm i \sigma}{}_{j} {}^{\tau} [\omega_{j} \sin \omega_{j} \tau \pm i \sigma_{j} \cos \omega_{j} \tau] / (\sigma_{j}{}^{2} \mp \omega_{j}{}^{2})$$

$$g \mathcal{K}_{j}^{-} = \mathcal{R}\omega_{j} e^{-i\sigma_{j}\tau} \sin(\omega_{j}\tau + \Delta \delta_{a_{-}}) / (\sigma_{j}^{2} + \omega_{j}^{2})^{1/2}$$

$$\mathcal{E}\mathcal{E} \cup \Delta \delta_{a_{-}} = \tan^{-1}(-i\sigma_{j}/\omega_{j}) \qquad [4-34]$$

$${}_{g}\mathcal{F}^{\pm}{}_{j} = \mathcal{R}\omega_{j} e^{\pm i\sigma}{}_{j}{}^{\tau} [(\sigma_{j}{}^{2}+\omega_{j}{}^{2})\cos\omega_{j}\tau \mp i 2\omega_{j}\sigma_{j}\sin\omega_{j}\tau] / (\sigma_{j}{}^{2}\mp\omega_{j}{}^{2})^{2}$$

$$g\mathcal{F}_{j} = \mathcal{R}\omega_{j}e^{-i\sigma_{j}\tau} \cos(\omega_{j}\tau - \Delta \delta_{r_{-}}) / (\sigma_{j}^{2} + \omega_{j}^{2})$$

$$\hbar \mathcal{E}\mathcal{E} \cup \Delta \delta_{r_{-}} = \tan^{-1} (i2\omega_{j}\sigma_{j}/(\sigma_{j}^{2} + \omega_{j}^{2})) \quad [4-35]$$

$$g\mathcal{B}^{\pm}{}_{j} = \mathcal{R}\omega_{j}e^{\pm i\sigma_{j}\tau}[\omega_{j}(\omega_{j}^{2}+3\sigma_{j}^{2})\sin\omega_{j}\tau \pm i\sigma_{j}(3\omega_{j}^{2}+\sigma_{j}^{2})\cos\omega_{j}\tau]$$

$$/(\sigma_{j}^{2}\mp\omega_{j}^{2})^{3}$$

$${}_{g}\mathscr{B}^{-}{}_{j} = \mathscr{R}\omega_{j} \mathbf{e}^{-\mathbf{i}\,\sigma}{}_{j}^{\tau} \, \sin(\omega_{j}\,\tau + \Delta \,\delta_{\mathbf{b}}) / (\sigma_{j}^{2} + \omega_{j}^{2})^{3/2}$$

ただし ⊿ δ_b_= tan⁻¹ [-i(3ωj²σj+σj³)/(ωj³+3ωjσj²)] [4-36] ベクトル表現は

$$g_{j} = \Re \omega_{j} e^{\pm i \sigma_{j}} \cos \delta_{j}$$
$$g_{j} = \Re \omega_{j} e^{\pm i \sigma_{j}} \sin \delta_{j} \qquad [4 - 37]$$

$$g \mathscr{H}_{j} = \mathscr{R} \omega_{j}^{2} e^{\pm i\rho}_{j} \cos \delta_{j} / (\sigma_{j}^{2} \mp \omega_{j}^{2})$$

$$g \mathscr{H}_{j}^{*} = \mathscr{R} \omega_{j}^{2} e^{\pm i\rho}_{j} \sin \delta_{j} / (\sigma_{j}^{2} \mp \omega_{j}^{2}) \qquad [4 - 38]$$

$$g \mathscr{H}_{j} = \mathscr{R} \omega_{j}^{3} e^{\pm i\rho}_{j} \cos \delta_{j} / (\sigma_{j}^{2} \mp \omega_{j}^{2})^{2}$$

$$g \mathscr{H}_{j}^{*} = \mathscr{R} \omega_{j}^{3} e^{\pm i\rho}_{j} \sin \delta_{j} / (\sigma_{j}^{2} \mp \omega_{j}^{2})^{2} \qquad [4 - 39]$$

$$g \mathscr{H}_{j} = \mathscr{R} \omega_{j}^{4} e^{\pm i\rho}_{j} \cos \delta_{j} / (\sigma_{j}^{2} \mp \omega_{j}^{2})^{3}$$

$$g \mathscr{H}_{j}^{*} = \mathscr{R} \omega_{j}^{4} e^{\pm i\rho}_{j} \sin \delta_{j} / (\sigma_{j}^{2} \mp \omega_{j}^{2})^{3} \qquad [4 - 40]$$

と纏められる。虚慣性モーメント空間 $_{I}$ Ψ^{3} の式は、 $_{R}$ Ψ^{3} の式の頭に虚数 i を付けるだけで良いので省略する。

この章では GAPS 理論に依って c と f の同時対導出が説明された。

5, 空間の曲率と関連

§5-(1) 全空間の曲率Φ

前章で

$$48.87668 \le w \tau \le 48.901915 \quad [rad^1] \quad [5 - 1]$$

が得られた。特に $\delta_j = \Theta_e$ と言う条件では $w \tau = 48.886015$ となっている。さて、 τ をプランク時間とみなすから B=W 円の半径 w は

$$w = 9.068822878 \times 10^{+44} \quad [rad^{1}s^{-1}] \quad [5 - 2]$$

となる。この値は数学的にも無限大の範疇に入るものとして許容されるならば、 B=W 理論の下、ここでのラプラス変換は成り立つ。これより曲率Φは

$\Phi = 1/w$

$= 1.10267894 \times 10^{-45} \quad [rad^{-1}s^{1}] \quad [5 - 3]$

となる。ただしwの単位は角速度である。

当然の事ながら、この半径 w は角度で表現される全空間での擬 B=W 球の半 径でもある。よって、この角度空間は曲率Φを持つといえる。この意味に於い て、先に与えたベクトル量の角度成分は曲線座標系に乗っていることになる。 なお、表面的な距離空間は直交座標系であるが、角度空間が曲率を持つことに よって興味深い現象が起きる。これに就いては後ほど述べる。

§5-(2) 微小変動角 Δ δ_jと歳差運動

半径 w の擬 B=W 円に接する接線 x_j を想定する。この円と x_j の接点から伸び る単位ベクトルを x とする。そして、この x と円との為す角を ϕ としよう。今、 この ϕ とはどのようなものか調べる。そこで、[Fig.5]のように記号を与えよう。 すると

$$\theta_{n} = \tan^{-1} \left(\cot \theta \right)$$
 [5 - 4]

$$\phi' = \tan^{-1} \left[(1 - \cos \theta) / \sin \theta \right]$$
[5 - 5]

が得られる。もしθがほぼゼロの場合、これを↓θとすると

$$\phi = \lim(\theta \rightarrow 0) \phi'$$

$$= \tan^{-1} \left[(1 - \cos \Delta \theta) / \sin \Delta \theta \right]$$
 [5 - 6]

となる。

 θ_n は θ の余角であるが、上記よりこれは基素関数のスカラー表現 v_j などの 位相成分

$$\Delta \delta_{a} = \tan^{-1} \left(\sigma_{j} / \omega_{j} \right)$$

$$= \theta_{n} \qquad (\theta_{n} + \theta = \pi / 2) \qquad [5 - 7]$$

を意味している。

また、ちょっとした演算で

$$\phi' = \theta / 2 \qquad [5 - 8]$$

が証明される。これにより

$$\phi \not \lesssim \Delta \theta / 2 \tag{5-9}$$

という制限が得られる(証明は省略)。ただしこのままでは正当な φ の評価は難し い。

この ϕ の値を異なる側面から得ることは出来ないだろうか。そもそも擬 B=W 円が曲率 Φ を持つのであるから、そこに内在するベクトルxは曲率 Φ を持った **x**で置き換えなければならない。この意味に於いて ϕ は B=W 円のみならず、**x** の真直線からの傾き角でもある。ところで**x**の大きさが分からない以上、直接 ϕ を求めることは出来ない。そこで再度 θ の値からその算出を試みる。実はこ れを調べている内にたまたま c の値が目に留まった。この過程の中で θ を選択 すると「Case①」の $\Delta \theta \lesssim 1.77807 \times 10^{-13}$ が目に付いた。これを念頭に置いて もっと厳しい条件「 θ を動かしても『Case②』の a^{\pm}_{j} の値が全く変動しないよ うな最大値」を課すと、

$$\Delta \theta \lesssim 1.95417 \times 10^{-16}$$
 [5 - 10]

が得られる。すると式[5-9]より

$$\phi \leq 9.77085 \times 10^{-17}$$
 [5 - 11]

という上限値が得られる。

この考え方を全空間に発展させる。当然、全空間も曲率を持つため、そこに

置かれるベクトルも曲率を持つと考えられる。この場合、真直線ベクトルを \mathbf{r} とし、曲率を持ったベクトルを \mathbf{g} とする。この \mathbf{g} は \mathbf{r} に対し、 $\Delta \theta や \phi$ に制限された微小な傾き角を持つ。今、 \mathbf{r} の持つ角度は $\delta_{j} = \Theta_{e}$ であるから、 \mathbf{g} の持つ角度は

$$\delta_{i} = \Theta_{e} + \phi \qquad [5 - 12]$$

と表される。ただしこの**演算 \Theta_{e^+\phi} は単純な加法ではないので注意が必要**だ。 ここでは δ_1 、 δ_2 、 δ_3 が互いに従属関係にあることだけを述べておく。

 $\cos \delta_{i} = \sin \delta_{n} \cos[\sin^{-1}(\cos \delta_{k} / \sin \delta_{n})]$

このgがスピンしていると想定しよう。すると、単位ベクトルgはrの廻り を ϕ の傾きで歳差運動していることになる。この点については後々詳しく述べ るが、[Fig.6(a)]は巨視的な場合でgとrは重なって見え、[Fig.6(b)]は微視的に 見た場合で歳差運動を表現する。

§5-(3) 各空間の関連

§4-(1)では全空間 H^9 の生まれ方に就いて調べた。ここでは R^3 、 G^3 、 I^3 の 繋がり方をもう少し詳しく調べてみよう。

距離空間の等価回路は電子回路における増幅回路に X^2 を当てはめ、帰還回路 には(iX)² = (icT)²を当てはめた。よって、各空間の関連は基素関数

 ${}_{\mathbf{r}}\mathcal{M}_{\mathbf{j}} = \mathcal{R}\omega_{\mathbf{j}} \mathbf{e}^{\pm \rho}{}_{\mathbf{j}} \cos \delta_{\mathbf{j}} \qquad \qquad \mathbf{g}\mathcal{M}_{\mathbf{j}} = \mathcal{R}\omega_{\mathbf{j}} \mathbf{e}^{\pm \mathbf{i} \rho}{}_{\mathbf{j}} \cos \delta_{\mathbf{j}}$

$$i\mathcal{M}_{j} = i\mathcal{R}\omega_{j} e^{\pm \rho_{j}} \cos \delta_{j}$$
[5 - 14]

の自乗を以って調べる。各式の左腰の添字はrが実、gがギャップ、iが虚空間を意味する。すると

 ${}_{\mathbf{r}}\mathcal{M}_{\mathbf{j}}^{2} = \mathcal{R}^{2} \omega_{\mathbf{j}}^{2} \mathbf{e}^{\pm 2\rho}{}_{\mathbf{j}} \cos^{2} \delta_{\mathbf{j}} \qquad {}_{\mathbf{g}}\mathcal{M}_{\mathbf{j}}^{2} = \mathcal{R}^{2} \omega_{\mathbf{j}}^{2} \mathbf{e}^{\pm \mathbf{i}2\rho}{}_{\mathbf{j}} \cos^{2} \delta_{\mathbf{j}},$

$${}_{i}\mathcal{U}_{i}^{2} = -\mathcal{R}^{2} \omega_{i}^{2} e^{\pm 2\rho_{i}} \cos^{2} \delta_{i}$$
[5 - 15]

である。θjがゼロ以外ではr4j²とi4j²の値は正負が反転している。これが粒子・ 反粒子数異常の論理的理由である。つまり反粒子は虚空間内に存在し、実空間 内には定常的には存在し得ないということだ。

さて、上式の $e^{\pm 2\rho_j}$ と $e^{\pm i2\rho_j}$ に注目しよう。 θ_j が $\pi/2$ の場合

 $_{r}e^{\pm 2\rho}{}_{j} = 1$, $_{g}e^{\pm i2\rho}{}_{j} = 1$, $(\theta_{j} = \pi/2)$ [5-16]

となる。これは第二相転移点と言えるもので、 [Sheet1]を見れば分かる通り、 θ_j は $\pi/2$ 以上にはならないため、実空間とギャップ空間は実質的に一致して しまうことを意味する。或いは、ギャップ空間は実空間に膜のように張り付い ていると言ってもよい。勿論これは実空間側から見た結果であり、虚空間側か ら見れば rJJ² と iJJ² の正負は逆転し虚空間とギャップ空間が一致するとも言える。 これ以後、全空間 H⁹ は定在化した。

現在私たちが見ることの出来る空間の相転移は、粒子・反粒子対生成として 観測される。ただし、これらにはギャップ空間が存在しないため安定せず、直 ぐに対消滅してしまう。つまりほとんど全ての事例として、相転移後の全空間 は成長する前になくなってしまう。これは

$$\mathbf{H} \stackrel{\text{\tiny Hexts}}{\to} \mathbf{H} \stackrel{6}{=} [\mathbf{R}^3 \mid \mathbf{I}^3] \stackrel{\text{\tiny Hox}}{\to} \mathbf{H}$$

$$[5 - 17]$$

と表現できる。

もう一点説明しなければならないことがある。それは、なぜ空間の関連を調 べるのにベクトルを使わずにその成分で議論したかだ。これに就いては基素関 数の導出され方を振り返れば明白だ。そこでは一対の次元ごとに取り扱われた。 だから、あくまでも各成分を取り上げて関連を議論することになる。その後、 三つの成分を組み合わせることによって全空間が表現される。こういったプロ セスがあるためベクトル表現は少々変わったものになる。この議論は次章で行 なう。

以上の理由によって

扫击二段

$$\mathbf{H}^{\scriptscriptstyle (1)} \xrightarrow{} \mathbf{H}{}^{9} = [\ \mathbf{R}{}^3 \ | \ \mathbf{G}{}^3 \ | \ \mathbf{I}{}^3]$$

[5 - 18]

を確定する。

6, 量子作用素 c h

§6-(1) Vと甘の演算

前章までで全空間 H⁹ が確定したため、これから先は実空間内に限定した議論 となる。さて、以前設定したベクトル表示の一部を

- $V = (v, v^{*}) \qquad V_{j} = (v_{j}, v_{j}^{*})$ $v = (v_{1}, v_{2}, v_{3}) \qquad v_{j} = c \sin^{2} \theta_{j} e^{+\rho_{j}} \cos \delta_{j}$ $v^{*} = (v^{*}_{1}, v^{*}_{2}, v^{*}_{3}) \qquad v^{*}_{j} = c \sin^{2} \theta_{j} e^{+\rho_{j}} \cos \delta_{j} \qquad [6-1]$ そしてまた $H = (h, h^{*}) \qquad H_{j} = (h_{j}, h^{*}_{j})$
 - $\mathbf{\hat{H}} = (\mathbf{\hat{h}}_{j}, \mathbf{\hat{h}}_{j})$ $\mathbf{\hat{H}}_{j} = (\mathbf{\hat{h}}_{j}, \mathbf{\hat{h}}_{j})$ $\mathbf{\hat{h}}_{j} = \mathbf{\hat{h}} \sin^{2} \theta_{j} e^{-\rho_{j}} \cos \delta_{j}$

 $\mathbf{\hat{h}}^* = (\hat{\mathbf{h}}^*_1, \hat{\mathbf{h}}^*_2, \hat{\mathbf{h}}^*_3) \qquad \hat{\mathbf{h}}^*_j = \hat{\mathbf{h}} \sin^2 \theta_j \, \mathbf{e}^{-\rho_j} \, \sin \delta_j \quad [\mathbf{6} - \mathbf{2}]$

と纏めておく。その他も同様に表現される。

これらの式が持っている内容を具体的に追求しよう。例えば成分 a_j とは、j 番目の B=W 円から得られた解であり、そこでは $\cos \delta_j$ が或る次元上の成分を表 しているが、 a_j を実空間 \mathbf{R}^3 に持ち込んだ場合には a_j そのものが大きさを表して いると考えられる。つまりそれらは、構成上はベクトル \mathbf{a} の成分ではあるが、 根元的には独立した大きさを持つものである。だから $\cos \delta_j$ のみを以って \mathbf{a} の j 成分とするのではなく、

$$\mathbf{e}^{\pm \rho}{}_{j} \pi_{j} = \sin^{2} \theta_{j} \ \mathbf{e}^{\pm \rho}{}_{j} \ \cos \delta_{j} \qquad [6-3]$$

が aのj成分となるのである。この理由に依って

$$\mathbf{e}^{\pm \rho_{j}} \pi_{j}^{*} = \sin^{2} \theta_{j} \mathbf{e}^{\pm \rho_{j}} \sin \delta_{j} \qquad [6-4]$$

をゴーストと呼んだ。

上記を理解した上で、Vと甘のスカラー積をしよう。

$$\mathbf{V} \cdot \mathbf{H} = (\mathbf{v}, \mathbf{v}^*)(\mathbf{h}, \mathbf{h}^*)$$

$$= v h + v h^{*} + v^{*} h + v^{*} h^{*}$$
 [6 - 5]

である。そこでこれを各部分ごとに演算する。

$$\mathbf{v} \, \mathbf{h} = \mathbf{c} \, \mathbf{h} (\sin^2 \theta \, \mathrm{e}^{+\,\rho} \cos \delta) (\sin^2 \theta \, \mathrm{e}^{-\,\rho} \cos \delta)$$

$$\downarrow \leftarrow \widehat{\mathbf{1}} \quad \mathbf{j} \perp \mathbf{k} \perp \mathbf{n}$$

$$\downarrow \leftarrow \widehat{\mathbf{2}} \quad (\sin^2 \theta_{\,\mathbf{j}} \, \mathrm{e}^{+\,\rho}_{\,\mathbf{j}} \, \cos \delta_{\,\mathbf{j}}) (\sin^2 \theta_{\,\mathbf{k}} \, \mathrm{e}^{-\,\rho}_{\,\mathbf{k}} \, \cos \delta_{\,\mathbf{k}}) = \mathbf{0}$$

$$= \mathbf{c} \, \mathbf{h} [\Sigma_{(\mathbf{j}=1,2,3)} \sin^4 \theta_{\,\mathbf{j}} \cos^2 \delta_{\,\mathbf{j}}] \qquad [\mathbf{6} - \mathbf{6}]$$

$$\mathbf{v} \, \mathbf{h}^* = \mathbf{c} \, \mathbf{h} (\sin^2 \theta \, \mathrm{e}^{+\,\rho} \cos \delta) (\sin^2 \theta \, \mathrm{e}^{-\,\rho} \sin \delta)$$

$$\downarrow \leftarrow \widehat{\mathbf{3}} \quad (\sin^2 \theta_{\,\mathbf{j}} \, \mathrm{e}^{\pm\,\rho}_{\,\mathbf{j}} \, \sin \delta_{\,\mathbf{j}}) = -[(\sin^2 \theta_{\,\mathbf{k}} \, \mathrm{e}^{\pm\,\rho}_{\,\mathbf{k}} \, \cos \delta_{\,\mathbf{k}}),$$

 $= -2 c \hbar [\Sigma_{(j=1,2,3)} \sin^4 \theta_j \cos^2 \delta_j]$ [6 - 7]

 $\mathbf{v}^* \mathbf{h} = c \mathbf{h} (\sin^2 \theta e^{+ \rho} \sin \delta) (\sin^2 \theta e^{- \rho} \cos \delta)$

$$= -2 c \hbar [\Sigma_{(j=1,2,3)} \sin^4 \theta_j \cos^2 \delta_j]$$
 [6 - 8]

$$\mathbf{v}^* \mathbf{h}^* = c \mathbf{h} (\sin^2 \theta e^{+\rho} \sin \delta) (\sin^2 \theta e^{-\rho} \sin \delta)$$

= $4 c \hbar [\Sigma_{(j=1,2,3)} \sin^4 \theta_j \cos^2 \delta_j]$ [6 - 9]

式[6-4]から[6-7]までの和を摂ると

$$\mathbf{V} \cdot \mathbf{H} = \mathbf{c} \, \mathbf{h} \left[\Sigma_{(j=1,2,3)} \sin^4 \theta_j \cos^2 \delta_j \right]$$
 [6 - 10]

が得られる。

次に V と Hのベクトル積を行なう。一般的には

$$\mathbf{V} \times \mathbf{H} = (\mathbf{v}, \mathbf{v}^*) \times (\mathbf{\tilde{h}}, \mathbf{\tilde{h}}^*)$$
$$\downarrow \leftarrow \textcircled{4} \quad \mathbf{V} \not/ \mathbf{H}$$
$$= 0 \qquad [6 - 11]$$

である。そして勿論

 $\mathbf{v} \times \mathbf{h} = \mathbf{0} \tag{6-12}$

$$\mathbf{v}^* \times \mathbf{\tilde{h}}^* = \mathbf{0} \tag{6-13}$$

となる。ところが v と f*、 v*と f の ベクトル 積には 解が存在する。 ただし

$$\mathbf{v} \times \mathbf{h}^* = -\mathbf{v}^* \times \mathbf{h}$$
 [6 - 14]

である。

さて

 $\mathbf{v} \times \mathbf{h}^* = (v_1, v_2, v_3) \times (h_{1}^*, h_{2}^*, h_{3}^*)$

$$= \left[{}^{(a)}(v_2 \, \hbar^*_3 - v_3 \, \hbar^*_2 \, , \, v_3 \, \hbar^*_1 - v_1 \, \hbar^*_3 \, , \, v_1 \, \hbar^*_2 - v_2 \, \hbar^*_1 \right) \, ,$$

となる。部分@は一般的な解であるが、部分Dはそうではない。何故Dなどが得られるかというと、 $v_j \ge \hbar_j$ は直に同じ次元上に乗っていないからだ。つまり $v_j \ge \hbar_j$ は平行ではないということである。もちろん $v_j \ge \hbar_k$ は直交ではない。 この関係は条件③より

$$\pi_{j}^{*} = -[(\pi_{k}, \pi_{n})] \qquad [6-15]$$

となっている。また、

 $v_{j} \times h_{j}^{*} = e^{+\rho_{j}} e^{-\rho_{j}} (\pi_{k} - \pi_{n})$ = $(\pi_{k} - \pi_{n})$ [6 - 16]

^(b) $(\mathbf{v}_1 \times \mathbf{h}^{*_1}, \mathbf{v}_2 \times \mathbf{h}^{*_2}, \mathbf{v}_3 \times \mathbf{h}^{*_3}) = c \mathbf{h} (\pi_2 - \pi_3, \pi_3 - \pi_1, \pi_1 - \pi_2)$

[6 - 17]

である。これは明らかにベクトルのスピンを表す[Fig.7]。以上を纏めると

 $\mathbf{v} \times \mathbf{h}^* = c \, \mathbf{h} \left[{}^{(a)} (\pi_2^2 - \pi_3^2, \pi_3^2 - \pi_1^2, \pi_1^2 - \pi_2^2) \right],$

と表される。

ただしこの解も単純に数値を当てはめればゼロになる。ゼロにならないのは 前章で述べたように角度空間に曲率があり δ_j に微小変動角 Δ_j が備わってい る場合だけである。

部分@は式[3-2]で見た通り

$$\pi_{j}^{2} - \pi_{k}^{2} = (\pi_{j} + i \pi_{k})^{2} \qquad \because \pi_{j} \perp \pi_{k} \qquad [6 - 19]$$

と書き直される。これは明らかにギャップ空間に存在するベクトルの大きさで、 それが実空間側に顔を覗かせているものだ。つまり、**v×h***は全空間が曲率を持 っている場合、ギャップ空間を芯(コア)に持つ実空間上のベクトルだといえる。 (л_j+i_{лk})を評価しやすいように(л_j, i_{лk})と置き直す。_{лj}とi_{лk}の従属関 係は[Fig.6]で表された、ベクトルが歳差運動する場合に描く円 O である。よっ

て、 $(\pi_j, i\pi_k)$ は δ_j の微小変化に伴う歳差運動をしているといえる。ただし、 これはあくまでもギャップ空間内に存在する現象だ。

これまでの考察からも察しが付くように、これは「力」や「荷」の元になる 性質(モーメント)だと思われる。つまり実空間上に見えるものは「力のモーメン ト」の元になり、ギャップ空間中に見えるものは「荷のモーメント(磁気モーメ ント)」の元になっていると思われる。

つぎに、式[6-14]より

 $\mathbf{v}^* \times \mathbf{h} = (v_1^*, v_2^*, v_3^*) \times (h_1, h_2, h_3)$

= $c \hbar [^{\odot}(\pi_{3}^{2} - \pi_{2}^{2}, \pi_{1}^{2} - \pi_{3}^{2}, \pi_{2}^{2} - \pi_{1}^{2}),$

^(d)(л₃-л₂, л₁-л₃, л₂-л₁)] [6-20]

が得られる。部分©は部分@に対して c **h**の実空間での領域が逆転しており、 部分@は部分**D**に対してベクトルのスピン方向が逆転している。

なお、c 方の単位は VAMS 単位系(今井 功/電磁気の単位はむずかしくない/科学/岩波書店/2002,1) に於いては[V¹A¹m¹s¹]となることを記しておく。

ここでの議論はギャップ空間に拡張でき、Vのギャップ空間中での量をgV、 **H**のそれをg**H**とすると

$$g\mathbf{v} \cdot g\mathbf{h} = c \mathbf{h} [\Sigma_{(j=1,2,3)} \sin^4 \theta_j e^{+i\rho_j} e^{-i\rho_j} \cos^2 \delta_j]$$

$$\downarrow \leftarrow e^{+i\rho_j} e^{-i\rho_j} = 1$$

$$\downarrow$$

$$= c \mathbf{h} [\Sigma_{(j=1,2,3)} \sin^4 \theta_j \cos^2 \delta_j] \qquad [6 - 21]$$

$$g\mathbf{v} \times_g \mathbf{h}^* = c \mathbf{h} [^{(a)} (\mathbf{x}_j^2 - \mathbf{x}_k^2), \ ^{(b)} (\mathbf{x}_j - \mathbf{x}_k)]_{[j=1,2,3 \ k=1,2,3]}$$

↓ ←
$$\varkappa_j = \pi_j$$

↓ $\varkappa_j^2 = \pi_j^2$
= c ħ[[@]($\pi_j^2 - \pi_k^2$), [®]($\pi_j - \pi_k$)][j=1,2,3 k=1,2,3] [6 - 22]
などとなる。スカラー演算 gV・g ĦはV・Ħと同じものになっている。

$$_{g}\mathbf{V} \cdot _{g}\mathbf{H} = \mathbf{V} \cdot \mathbf{H}$$
 [6 - 23]

またベクトル積も、その性質の一部が実空間内に漏れ出していることが見て取れる。

このセクションでは 「**chという量子作用素は曲率空間に於いて、傾き角 Δδ1の歳差運動が伴うスピンを持っている**」ことが分かった。

また、電子の異常磁気モーメントの原因が、この歳差運動にあることは明ら かだ。そして、ゆらぎもこの歳差運動に起因されていると思われる。

§6-(2) ベクトル解析 (補)

ここでは、この後出て来るベクトル演算方法を述べておきたい。

まず、前章で行なったスカラー積の見直しを行ないたい。そこでは、条件③ として

 $(\sin^2 \theta_j e^{\pm \rho_j} \sin \delta_j) = -[(\sin^2 \theta_k e^{\pm \rho_k} \cos \delta_k), (\sin^2 \theta_n e^{\pm \rho_n} \cos \delta_k)]$ とした。ところが、ベクトルの向きの取り方や順序の取り方によっては

$$(\sin^2 \theta_j e^{\pm \rho_j} \sin \delta_j) = [(\sin^2 \theta_k e^{\pm \rho_k} \cos \delta_k)],$$

 $(\sin^2 \theta_n e^{\pm \rho_n} \cos \delta_k)] \qquad [6-24]$

となることはすぐに示される。

では後々のために以下のように置く。

$$\mathbf{R} = (\mathbf{r}, \mathbf{r}^{*})$$

$$\mathbf{r}_{j} = \mathbf{c} \omega_{j}^{3} \mathbf{e}^{+\rho}{}_{j} \cos \delta_{j} / (\sigma_{j}^{2} + \omega_{j}^{2})^{2}$$

$$\mathbf{r}_{j}^{*} = \mathbf{c} \omega_{j}^{3} \mathbf{e}^{+\rho}{}_{j} \sin \delta_{j} / (\sigma_{j}^{2} + \omega_{j}^{2})^{2}$$

$$\mathbf{r}_{j} = \mathbf{c} \pi_{j}$$

$$\mathbf{r}_{j}^{*} = \mathbf{c} \pi_{j}^{*}$$

$$\mathbf{r}_{j}^{*} = \mathbf{c} \pi_{j}^{*}$$

$$\mathbf{f}_{j}^{*} = \mathbf{c} \pi_{j}^{*}$$

すると、式[6-20]より

$$\pi_{j}^{*} = (\pi_{k}, \pi_{n})$$
 [6 - 27]

とできる。そして、

 $\mathbf{R} \boldsymbol{\cdot} \mathbf{R} = \mathbf{r} \mathbf{r} + \mathbf{r} \mathbf{r}^* + \mathbf{r}^* \mathbf{r} + \mathbf{r}^* \mathbf{r}^*$

$$\mathbf{rr} = \mathbf{1} \sum_{(j=1,2,3)} [\mathbf{r}_j^2]$$
 [6 - 28]

$$\mathbf{rr}^* = 2 \sum_{(j=1,2,3)} [r_j^2]$$
 [6 - 29]

$$\mathbf{r}^*\mathbf{r} = 2\sum_{(j=1,2,3)} [r_j^2]$$
 [6 - 30]

$$\mathbf{r}^* \mathbf{r}^* = 4 \sum_{(j=1,2,3)} [r_j^2]$$
 [6 - 31]

が得られる。

次にベクトルと分数ベクトルのスカラー積 **a・(1/b)** について考える。これ は

$$\mathbf{a} \cdot (\mathbf{1/b}) = \mathbf{a} \cdot [\mathbf{b/(b \cdot b)}]$$

$$= \mathbf{a} \cdot \mathbf{b} / \mathbf{b}_j^2$$

 $= a_j b_j / b_j^2$ (特別な場合には $= a_j / b_j$) [6-32]

となる。なお、(**1∕b**)は **b** の逆ベクトル **b**⁻¹ ではない。これを「スカラー分数 積演算」とよぼう。

ベクトルと分数ベクトルのベクトル積 a×(1/b) は

$$\mathbf{a} \times (\mathbf{1} / \mathbf{b}) = \mathbf{a} \times [\mathbf{b} / (\mathbf{b} \cdot \mathbf{b})]$$

$$= \mathbf{a} \times (\mathbf{b} / \mathbf{b}_j^2) \qquad [6 - 33]$$

となる。これが「ベクトル分数積演算」である。

7, 質量の閉じ込めと混合

§7-(1) 質量式の導出

光の速さが c という限定されたものである以上、全空間 H⁹には粘性があると 考えられる。一般的には、この粘性の大きさを測る術語を動粘度という。宇宙 はエーテルで満たされていると信じていた人たちはこの動粘度こそが質量の生 まれる主因であると考えていた(質量の概念/マックス・ヤンマー/講談社)。今この考え方を、動 き難さを表す「動難度」という尺度に変えてみよう。

動難度とは、基素関数 ajを積分することによって

$$\mathbf{B} = (\mathbf{b}, \mathbf{b}^*)$$

と表されている。 これを使って質量を表すには「角運動量」**#**を利用する |**#**|は**#**の絶対値表現

$$|\mathbf{H}| = \mathbf{H}_j$$

$$= \hbar \left[\sum_{(j=1,2,3)} \sin^4 \theta_j e^{-2\rho_j} \cos^2 \delta_j \right]^{1/2}$$
 [7 - 1]

とすると、質量を表す式は

$${}_{1}\mathbf{M}_{j} = \nexists_{j} / (\mathbf{A} \cdot \mathbf{B})$$
[7 - 2]

= $[\texttt{H}_{j}/(c^{2}\Sigma_{(j=1,2,3)}\sin^{5}\theta_{j}e^{+2\rho_{j}}\cos^{2}\delta_{j})]$

=
$$(\hbar w/c^2) [(\Sigma_{(j=1,2,3)} \sin^4 \theta_j e^{-2\rho_j} \cos^2 \delta_j)^{1/2}]$$

 $/(\Sigma_{(j=1,2,3)} \sin^5 \theta_j e^{+2\rho_j} \cos^2 \delta_j)]$

となる。ところが質量表現は一種類だけではなく、この絶対値#を使うことに よって少なくとも七種類は存在する。例えば

$${}_{2}\mathbf{M}_{j} = \mathbf{H}_{j} / (\mathbf{V} \cdot \mathbf{R})$$
[7 - 3]

=
$$[\texttt{H}_{j}/(c^{2}\Sigma_{(j=1,2,3)}\sin^{5}\theta_{j}e^{+2\rho_{j}}\cos^{2}\delta_{j})]$$

$${}_{3}M_{j} = \nexists_{j} \mathbf{V} / (\mathbf{A} \cdot \mathbf{R} \cdot \mathbf{R})$$
[7 - 4]

$$= (\not\exists j \ c^2) [(\Sigma_{(j=1,2,3)} \sin^5 \theta_j e^{+2\rho_j} \cos^2 \delta_j) \ / (\Sigma_j A_j R_j) (\Sigma_j R_j R_j)]$$

- 34 -

 ${}_{4}M_{j} = \nexists_{j} \mathbb{R}/(\mathbb{V} \cdot \mathbb{V} \cdot \mathbb{B}) \qquad {}_{5}M_{j} = \nexists_{j} \mathbb{B}/(\mathbb{R} \cdot \mathbb{R} \cdot \mathbb{R})$

 $_{6}M_{j} = H_{j}A/(V \cdot V \cdot V)$ $_{7}M_{j} = H_{j}(A \cdot A \cdot R)/(V \cdot V \cdot V \cdot V \cdot V)$ など(長くなるから一部簡略化した)。これらによって動難度云々という理由付け など無意味になる。

そしてこればかりでなく、§4-(2)で述べた通り「力のモーメント」

$$\mathbf{E} = (\varepsilon, \varepsilon^*)$$
 [7-5]

を使っても質量表現はできる。これの絶対値である「エネルギー・Ei」を使って

$${}_{0}\mathbf{M}_{j} = \mathbf{E}_{j} / (\mathbf{V} \cdot \mathbf{V})$$

$$[7 - 6]$$

= $(E_j / [c^2 (\Sigma_{(j=1,2,3)} \sin^4 \theta_j e^{+2\rho_j} \cos^2 \delta_j)]$

と表される。いったいどれを選択すればよいのかと思い悩むほどだ。

しかし実のところ、これらは一つの次元だけに注目(単次元解析)すれば全て同 一の質量式 mj で表される。それは

$$\mathbf{m}_{j} = \hbar \mathbf{w} / (\mathbf{c}^{2} \sin^{3} \theta_{j} \mathbf{e}^{+3\rho_{j}} \cos \delta_{j})$$
 [7 - 7]

である。これこそ根源的な質量式である。

根源的な質量 m_j がある以上、 $_0M_j$ から $_7M_j$ は複合粒子を表しているとみられる。現時点ではそれぞれ特定することはしないが、例として $_2M_j$ を調べよう。これは

 $Q_j = (\sin^4 \theta_j e^{-2\rho_j} \cos^2 \delta_j + \sin^4 \theta_k e^{-2\rho_k} \cos^2 \delta_k$

+
$$\sin^4 \theta_n e^{-2\rho_n} \cos^2 \delta_n$$
)^{1/2} [7-9]
となっている。この式は分解することの出来ない三つの成分により構成されて
いる。このような素粒子は確かに存在している。例えば、単独で取り出すこと
のできない三つのクォークから構成されている「陽子」などがある。
また式[7-5]に手を加えれば

$$Q_{j} = (\sin^{4}\theta_{j}e^{-2\rho_{j}}\cos^{2}\delta_{j} + \sin^{4}\theta_{j}e^{-2\rho_{j}}\sin^{2}\delta_{j})^{1/2}$$
 [7 - 10]

- 35 -

と表すことも出来る。これは二つのクォークによって構成された「中間子」と 見ることが出来る。

このように、「三つの世代」とは三つの次元、または三つの B=W 円のことだ と考えられる。

結果として式[7 - 9]、[7 - 10]より「**質量の混合とクォークの閉じ込め**」が証明される。そして m_jが一つの世代を表すため、それの複合した質量式は「世代の混合」が成されているといえる。

ここで見られる「世代の混合」に依って「ニュートリノ振動」の根本原因が 説明される。

§7-(2) 角運動量とスピン

ひとたび質量表現が出来てしまえば、古典論的にはその他の物理量を導出することは簡単だ。ただし、ここではそれに主眼を置かずスピンについて再考したい。先程のように 2Mj から始める。すると運動量 2**P** は

$$_{2}\mathbf{P} = _{2}\mathbf{M}_{j}\mathbf{V} \qquad \{ = \mathbf{H}_{j}\mathbf{V}/(\mathbf{V} \cdot \mathbf{R}) \}$$

$$= \cancel{I}_{j} / \cancel{R}$$
 [7 - 11]

で、角運動量₂Lは

$$_{2}\mathbf{L} = _{2}\mathbf{P} \times \mathbf{R} \qquad \{ = (\mathbf{H}_{j} / \mathbf{R}) \times \mathbf{R} \}$$

$$= (\not| f_{j} / R_{j^{2}}) \mathbf{R} \times \mathbf{R}$$

 $= 0 \qquad \therefore \mathbf{R} \not/ \mathbf{R} \qquad [7 - 12]$

となってしまう。そこで**R**に替わって**rやr***を使う。式[6-24]から[6-27]を参 照して

 ${}_{2}\mathbf{l}_{a} = (\cancel{H}_{j} / \mathbf{r}^{2})\mathbf{r} \times \mathbf{r} \qquad {}_{2}\mathbf{l}_{b} = (\cancel{H}_{j} / \mathbf{r}_{j}^{*2})\mathbf{r}^{*} \times \mathbf{r}^{*} \qquad [7 - 13]$

= 0 = 0

 $2\mathbf{l}_{c} = (\mathbf{H}_{j} / \mathbf{r}_{j}\mathbf{r}_{j})\mathbf{r} \times \mathbf{r}^{*} \qquad 2\mathbf{l}_{d} = (\mathbf{H}_{j} / \mathbf{r}_{j}\mathbf{r}_{j}^{*})\mathbf{r}^{*} \times \mathbf{r}$

$$= [1](\nexists_{j} \sum_{(j=1,2,3)} [r_{j}^{2}]) \mathbf{r} \times \mathbf{r}^{*} = [1/2](\nexists_{j} \sum_{(j=1,2,3)} [r_{j}^{2}]) \mathbf{r}^{*} \times \mathbf{r}$$

- 36 -
${}_{2}\mathbf{l}_{e} = (\not | \mathbf{j} / \mathbf{r}_{j}^{*}\mathbf{r}_{j})\mathbf{r} \times \mathbf{r}^{*} \qquad {}_{2}\mathbf{l}_{f} = (\not | \mathbf{j} / \mathbf{r}_{j}^{*}\mathbf{r}_{j}^{*})\mathbf{r}^{*} \times \mathbf{r}$

= [1/2]($H_j/\Sigma_{(j=1,2,3)}$ [r_j^2]) $\mathbf{r} \times \mathbf{r}^*$ = [1/4]($H_j/\Sigma_{(j=1,2,3)}$ [r_j^2]) $\mathbf{r}^* \times \mathbf{r}$ となる。ここにスピン量子数 2S が出現した。

$$_{2}\mathbf{S} = 0, \ 1/4, \ 1/2, \ 1$$
 [7-14]

スピン量子数[1/4]は興味深い値だ。

量子化された単位空間中に存在するベクトル量子は、各々の空間軸に対して 固定された仰角 Θ_e を持っている。また、この仰角 Θ_e は電子の傾き角度でもあ ることは以前述べた。そこで

 $\Sigma_{(j=1,2,3)} [r_j^2] = (c^2 / w^2) \Sigma_{(j=1,2,3)} \sin^6 \theta_j e^{-2\rho_j} \cos^2 \delta_j$ [7 - 15] の cos² δ_j は微小変動角を考慮しても

$$\cos^2 \delta_j = 1/3$$
 [7 - 16]

は成り立っているといえる。この cos²δを取り出して

$$\Sigma_{(j=1,2,3)} [r_j^2] = (c^2 / w^2) \cos^2 \delta \Sigma_{(j=1,2,3)} [\tilde{b}_j^2]$$
[7 - 17]

が成り立つと考えられる。**甘**jからは

$$H_{j} = \hbar \cos \delta \left[\Sigma_{(j=1,2,3)} \sin^{4} \theta_{j} e^{-2\rho_{j}} \right]^{1/2}$$

$$= \hbar \cos \delta \left[\sum_{(j=1,2,3)} \hbar_j^2 \right]^{1/2}$$
 [7 - 18]

というように $\cos \delta$ を外に出すことが出来る。つまり式[7 - 13]にある角運動量 2]の一連の式中には

$$\cos \delta / \cos^2 \delta = \sqrt{3}$$
 [7-19]

が全て含まれていて、これを考慮すると以下のように書き換えられる。

$${}_{2}\mathbf{l}_{a} = (\cancel{H}_{j}/\mathbf{r}_{j}^{2})\mathbf{r}\times\mathbf{r} \qquad {}_{2}\mathbf{l}_{b} = (\cancel{H}_{j}/\mathbf{r}_{j}^{*2})\mathbf{r}^{*}\times\mathbf{r}^{*} \qquad [7 - 20]$$

$$_{2}\mathbf{l}_{c} = (\mathbf{H}_{j} / \mathbf{r}_{j}\mathbf{r}_{j})\mathbf{r} \times \mathbf{r}^{*}$$

=
$$[\sqrt{3}]\hbar [(\Sigma_{(j=1,2,3)} \hbar_j^2)]^{1/2} \Sigma_{(j=1,2,3)} \tilde{\Sigma}_j^2] \pi \times \pi^*$$

 $_{2}\mathbf{l}_{d} = (\mathbf{H}_{j} / \mathbf{r}_{j}\mathbf{r}_{j}^{*})\mathbf{r}^{*} \times \mathbf{r}$

 $= \ [\sqrt{3/2}] \ \hbar \ [(\Sigma_{(j=1,2,3)} \ \hbar_j^2) \ ^{1/2} / \Sigma_{(j=1,2,3)} \ \mathbb{S}_j^2] \ \mathbf{x} \ ^* \times \ \mathbf{x}$

 $_{2}\mathbf{l}_{e} = (\mathbf{H}_{j} / \mathbf{r}_{j} \mathbf{r}_{j})\mathbf{r} \times \mathbf{r}^{*}$

= $[\sqrt{3/2}]$ h $[(\Sigma_{(j=1,2,3)} h_j^2)^{1/2} / \Sigma_{(j=1,2,3)} b_j^2]$ s × s *

 $_{2}\mathbf{l}_{f} = (\mathbf{H}_{j} / \mathbf{r}_{j} * \mathbf{r}_{j}) \mathbf{r}^{*} \times \mathbf{r}$

- $= [\sqrt{3/4}] \hbar [(\Sigma_{(j=1,2,3)} \hbar_j^2)^{1/2} / \Sigma_{(j=1,2,3)} \delta_j^2] \pi^* \times \pi$ ここではスピン角運動量 2**S** が出現した。これを纏めておく。
 - $_{2}\mathbf{S} = 0, \ \sqrt{3}\,\hbar, \ \sqrt{3}/2\,\hbar, \ \sqrt{3}/4\,\hbar$ [7 21]

上記考察は三次元空間を取り扱ったため少々回りくどかった。そこで単次元 空間として考察する。例えば、ここにあるベクトル P を置く。この P が z 軸に 対し角 Θ_e の傾きを持つとすると、この P の z 軸上への射影は $p_j = P_j \cos \Theta_e$ で表 される。これは $P_j = p_j / \cos \Theta_e$ と置き換えられる。つまり、 $P_j = \sqrt{3} p_j$ となる。 さて、今の場合 $p_j = \mathbf{H} / [\mathbf{r}_j^2]$ であるから

 $P_j = \sqrt{3} \not| j / [r_j^2]$

とすることができる。このベクトルPはx、y、z軸全てに対して傾き Θ_e を持っているため

$$P_j = \sqrt{3} H_j / \sum_{(j=1,2,3)} [r_j^2]$$

となる。これは電子のスピン量子数 S とスピン角運動量 S をベクトルの傾きで 説明するよく使われる手法を拡張したものである。

質量 3Mjから追求すると、スピン量子数 3S とスピン角運動量 3S は

 $_{3}\mathbf{S} = 0, \quad 1/4, \quad 1/2, \quad 1, \quad 2, \quad 4$ [7 - 22]

 $_{3}$ S = 0, $\sqrt{3}/4$ 市, $\sqrt{3}/2$ 市, $\sqrt{3}$ 市, $2\sqrt{3}$ 市, $4\sqrt{3}$ 市 [7-23] と求まる。

§7-(3) 量子作用素 G と質量の関係

§6-(1)で量子作用素 c **h**が得られた。それに

$$\mathbf{G}_{j} = \mathbf{V} \cdot \mathbf{H} \qquad \{ = \mathbf{c} \, \mathbf{h} \left[\Sigma_{(j=1,2,3)} \sin^{4} \theta_{j} \cos^{2} \delta_{j} \right] \} \qquad [7 - 24]$$

G = V×H { = 式[6 - 18] , [6 - 20] 参照 } [7 - 25] という記号を与える。

これらを基に質量式を出す。先程と同様に質量はスカラーだという立場から

$$_{G}M_{j} = G_{j} / [\mathbf{V} \cdot (\mathbf{V} \times \mathbf{R})]$$
[7 - 26]

$$= \mathbf{H} / (\mathbf{V} \times \mathbf{R}) \qquad \{ = \mathbf{H} \cdot (\mathbf{V} \times \mathbf{R}) / (V_j \times R_j)^2 \} \qquad [7 - 27]$$

$$= \mathbf{H} \cdot (\mathbf{V} \times \mathbf{R}) / [2 g(v_j \times r_j)]$$

と G_jを使って表される。上下の式は先行される演算によって解が変わるという 意味だが

$$G_{i} / [\mathbf{V} \cdot (\mathbf{V} \times \mathbf{R})] \neq \mathbf{H} / (\mathbf{V} \times \mathbf{R})$$
[7 - 28]

である。両者はスピンの現れ方も異なっている。上側の式[7 - 26]はスピンを表現してはいない。

次に、**G**を使うと

 $_{\mathbf{G}}\mathbf{M}_{\mathbf{j}} = \mathbf{G} / [\mathbf{V} \cdot \mathbf{V} \cdot \mathbf{R}]$

$$=\mathbf{G} \cdot \mathbf{R} / [V_i^2 R_i^2]$$

[7 - 29]

が得られる。このように量子作用素 c **h**を使うとスピンを内在した形で質量式 が作り出される。

量子作用素 **G** は性質を表し、**G**_jは大きさを表しているが、このように質量式 が複雑になればなるほど現実世界では膨大なエネルギーが必要になると思われ る。以下に量子作用素の状態事例を上げる。

- 孤立した量子作用素が何らかの原因で動き回ることが出来ない場合には、そのエネルギーのほとんど全てが質量に変換される。
- ② 孤立していない量子作用素が動き回らない場合には、そのエネルギーは素粒 子間の比較的小さな結合エネルギーと大きな質量とに分配される。
- ③ 孤立していない量子作用素が動くことが出来る場合、そのエネルギーは素粒

子間の大きな結合エネルギーと運動エネルギー、そして比較的小さな質量と に分配される。

④ 孤立した量子作用素が動き回れる場合、そのエネルギーのほとんど全てが運動エネルギーとなり、質量はゼロか、あっても極微小となる。

全ての事例において整数、反整数の全てのスピンを当てはめることが出来る。 すると④は光子やニュートリノを表現しているといえる。この意味において、 光子が極微小の質量を持っている可能性を排除することはできない。もし光子 が質量を持っていれば、光速度は全空間の最大速度を表さず、光子とニュート リノの速度差がほとんど見られないという観測結果の正当性を裏打ちするもの になる。

このように考えれば光速度 c はプランク定数 f の置かれた立場との整合性が 取れる。

ところで、スピンが内在された質量式と言えばフェルミ粒子に相当する。こ れを表現する式も、実はたくさん作り出すことが出来る。例えば「力のモーメ ント」**E**をもう一度使うと

$$_{0}M_{i} = E/(V \times V)$$

$$= \mathbf{E} \cdot (\mathbf{V} \times \mathbf{V}) / (\mathbf{V}_{j} \times \mathbf{V}_{j})^{2}$$
 [7 - 30]

$$= \mathbf{E} \cdot (\mathbf{V} \times \mathbf{V}) / [2 f (\mathbf{v}_{j} \times \mathbf{v}_{j})]$$

などと表現される。式[7-23]とここでの式に「2」という値が演算により自然に 導き出される。これはスピン量子数 S = 1/2 を表している。

なお、 $_1M_j$ から $_7M_j$ にも全て上のように表現される式 $_1M_j$ から $_7M_j$ が対応する。 これを双対関係(デュアリティー)と言う。

プランク質量 Mpと重力定数 GNの関係は

$$M_p = (c \hbar / G_N)^{1/2}$$

である。これを「GAPS 理論」に合わせると

$$\mathbf{G} = G_N M_p^2$$
, $G_i = G_N M_p^2$ [7 - 31]

と表される。これはギャップ空間に拡張でき

$$_{g}\mathbf{G} = {}_{g}\mathbf{V} \times_{g} \mathbf{H}, \qquad {}_{g}\mathbf{G}_{j} = {}_{g}\mathbf{V} \cdot_{g} \mathbf{H} \qquad [7 - 32]$$

- 40 -

とすると

$$_{g}\mathbf{G} = G_{N} M_{p}^{2}, \qquad gG_{j} = G_{N} M_{p}^{2}$$
 [7 - 33]

となる。

式[6-21]、[6-23]で見たとおり、 $_{g}$ Gの性質は実空間内に漏れ出し、大きさ $G_{j} \ge {}_{g}G_{j}$ は合致する。ここに全空間 H^{9} の本質を語る事象が含まれている。

§8-(1) 分数電荷と素電荷

クーロンの法則は

$$\mathbf{F} = \mathbf{Q}_{j} \cdot \mathbf{E}$$

である。これは

 $\mathbf{F}_q = \mathbf{N} q_j^2 / r_j^2$ (N = n/4 $\pi \epsilon_0$, n は次元のない定数) と書き直される。ここで、r j は GAPS 理論の R を意味するとし

$$\mathbf{F}_{q} = N\mathbf{q}_{j}^{2} / (\mathbf{R} \cdot \mathbf{R})$$
[8 - 1]

と置く。いまここに、nが微細構造定数αの逆数ならば

$$Nq_{j}^{2} = c \hbar \qquad (\alpha = e^{2} / 4 \pi \epsilon_{0} c \hbar)$$

である。ところで式[8 - 1]から Nq_j^2 をベクトルとみなす必要もあるから、Gと G_j を使って

$$q_j^2 = G_j / N$$
 [8 - 2]

$$q_j^2 = G / N$$
 [8 - 3]

とする。よって、式[8-1]は式[8-3]より

$$\mathbf{F}_{q} = \mathbf{G} / R_{j}^{2}$$
[8 - 4]

と表される。この具体的な式を一種類だけ書くと

$$\mathbf{1}\mathbf{f}_{q} = \mathbf{g}/\mathbf{r}_{j}^{2}$$
$$= \mathbf{v}\times\mathbf{h}^{*}/\mathbf{r}_{j}^{*2}$$
[8-5]

などとなる。

ここで電荷 q_j について考える。 §6-(1)で量子作用素について議論した通り 式[8-2]、[8-3]は分解できない三つの要素とスピンを持っている。これを以っ て、分数電荷は現実世界に存在し得ないと言える。

なお、この三つの要素をクォークに付随する電荷としてよい。この意味に於 いて、分数電荷も質量の閉じ込めと全く同じ原理によって閉じ込められている といえる。つまり

$$q_{j} = (G_{j} / N)^{1/2}$$

$$= [c \hbar (\Sigma_{(j=1,2,3)} \pi_{j^{2}}) / N]^{1/2}$$

$$= [c \hbar (\pi_{1}^{2} + \pi_{2}^{2} + \pi_{3}^{2}) / N]^{1/2} [8 - 6]$$

の場合には一つの電荷が三つの1/3分数電荷によって構成され、そして

$$\pi_{j}^{*2} = (\pi_{k}^{2}, \pi_{n}^{2})$$
 [8-7]

となることを考慮すると式[8-6]は

$$q_{j} = [c \hbar (\pi_{1}^{2} + \pi_{1}^{*2}) / N]^{1/2}$$
[8-8]

で表され、これは一つの電荷が一つの 1/3 分数電荷と一つの 2/3 分数電荷に よって構成されていると捉えることができる。

§8-(2) 重力とクーロン力からの考察

では、重力の GAPS 理論表現に就いて述べる。 一般的にプランク質量は

$$m_p = \hbar / (c^2 t_{pl})$$

で与えられる。これを念頭に置く。 式[7-7]及びそのゴーストは

$$\mathbf{m}_{j} = \hbar \mathbf{w} / (\mathbf{c}^{2} \sin^{3} \theta_{j} \mathbf{e}^{+3\rho}_{j} \cos \delta_{j})$$

$$\mathbf{m}_{j}^{*} = \hbar \mathbf{w} / (\mathbf{c}^{2} \sin^{3} \theta_{j} \mathbf{e}^{+3\rho}_{j} \sin \delta_{j})$$

$$[8 - 15]$$

で、このゴースト式[8 - 15]の極限を以下のように取る。 相転移の始まりは $\delta_{j} \rightarrow 0$ で、そのとき $\theta_{j} \rightarrow \pi/2$ とする。これは

$$\begin{split} \lim_{[\theta_j \to \pi/2]} \sin^3 \theta_j &= 1, \qquad \lim_{[\theta_j \to \pi/2]} e^{+3\rho_j} = 1, \qquad \lim_{[\delta_j \to 0]} \sin \delta_j = \delta_j \\ \delta_j &= w \tau, \qquad \tau = t_{pl} \end{split}$$

$$\lim_{[\theta_j \to \pi/2, \delta_j \to 0]} m_j^* = \hbar/(c^2 t_{pl})$$
[8 - 16]

- 43 -

が得られる。これにより、明らかに GAPS 理論の質量式はプランク質量を包含 する。また、プランク質量がどのような状況で出現するかも理解できる。 一般的な同一質量間の重力式は GN を重力定数とすると

$$\mathbf{F}_{\rm G} = \mathbf{G}_{\rm N} \mathbf{m}_{\rm j}^2 / r_{\rm j}^2$$

で与えられる。この GN も当然

 $G_N = c \hbar / m_p^2$

= $(\mathbf{V} \cdot \mathbf{H}) / {}_{1}\mathbf{M}_{j^{2}}$ [または = $(\mathbf{V} \times \mathbf{H}) / {}_{1}\mathbf{M}_{j^{2}}$] [8-17] などに変更できる。以上より

$$F_{G} = G / R_{j}^{2}$$
 [8 - 18]

が得られる。

先程のクーロン力の式[8-4]と、この重力式は与えられた極限に於いて全く同じものである。ところで式[6-11]で述べたように、角度空間が曲率を持たなければこの力はゼロになる。しかし、曲率が存在する場合の力の総和は

$$\mathbf{F}_{\rm G} = \mathbf{G} / R_{\rm j}^2$$

$$= \zeta_0$$
 [8 - 19]

という微弱な力を与えられる。これが現在の宇宙を纏め上げる力、重力である。 具体的な力の解は以下のようになる。

 $\mathbf{1}\mathbf{f} = \mathbf{v} \times \mathbf{\ddot{h}}^* / \mathbf{r}_j^2 \qquad [8 - 20]$

$${}_{2}\mathbf{f} = \mathbf{v} \times \mathbf{h}^{*} / \mathbf{r}_{i} \mathbf{r}_{i}^{*}$$
[8 - 21]

$$_{3}\mathbf{f} = \mathbf{v} \times \mathbf{h}^{*} / \mathbf{r}_{i}^{*2}$$
 [8 - 22]

なお、

 $\mathbf{v} \times \mathbf{h}^* = \mathbf{h} \times \mathbf{v}^*, \quad \mathbf{v}^* \times \mathbf{h} = \mathbf{h}^* \times \mathbf{v}$

である。そして

$\mathbf{v} \times \mathbf{h}^* = -\mathbf{h}^* \times \mathbf{v}, \qquad \mathbf{v}^* \times \mathbf{h} = -\mathbf{h} \times \mathbf{v}^*$

はスピンの反転を意味する。スピン量子数は rj²、rjrj^{*}、 rj^{*2}に依って決まるた

- 44 -

め、この違いによって別種の力になると考えられる。また「**v**×**h**」、「**v***×**h***」 は角度空間が曲率を持っていても「ゼロ」と考えられる。そして、負の力は全 てに於いて想定できる。実は全ての力の式を書くとその数は18となるが、同じ ものを纏め上げると上記の三つになる。これらの力は全空間の相転移時点、或 いは現在でも極限をとりえる状況に於いて同じものであることは理解できる。

誤解を避けるために力の種類を書き出す。それは、力の総和「 \mathbf{F}_{G} 」とその中に包含される「 $_{1}\mathbf{f}$ 」「 $_{2}\mathbf{f}$ 」の四つである。

これにて、大統一理論は証明された。

9, 次なるステップ

以上のように、GAPS 理論から全ての懸案が解決される様子を見た。しかし、 具体性に欠ける点も存在する。例えば、クォークの混合角などの数値を論理的 に導出することはできなかった。電荷や重力定数なども後付けになってしまう。 電子の異常磁気モーメントと角度空間の曲率の関係もはっきりさせなかった。 ただ、これらの問題を乗り越える道は残されている思う。一つの道標として [Fig.8]のような等価回路を示そう。もちろん、全空間が発振によって出来上が った後に持ち込むことのできる等価回路だ。これはギャップ空間の内部構造に まで言及するものである。ギャップ空間の正当性を議論したところで既にここ まで入り込むべきであったかもしれない。チャージに就いての詳しい態様も理 解されるはずだ。しかし、あまりにも細かくて複雑な議論になり全体を見失っ てしまう恐れがあったため躊躇ってしまった。そして、ここに踏み込まなかっ た最大の理由は小柴昌俊博士のノーベル賞受賞公演にある。曰く

「ニュートリノ振動が証明される今、質量を説明する簡単な理論が出て来て も可笑しくない」。

以上

Fig.8

[1]

[2]

Graph1

[rear part] $\Re \omega \exp(\pm i\rho) \cos \delta = \Re w \sin \theta \cos(w\tau \cos \theta) \cos(w\tau \sin \theta)$

θ

[imaginary part] $\Re \omega \exp(\pm i\rho) \cos \delta = i \Re w \sin \theta \sin(w \tau \cos \theta) \cos(w \tau \sin \theta)$

θ

-0.15

 Graph3
 $c\omega \exp(+\rho)\cos\delta = cwsin\theta \exp(w\tau \cos\theta)\cos(w\tau \sin\theta)$

 10
 9

 9
 9

 0
 9

 7
 9

 6
 9

θ

cωexp(±iρ)cosδ Graph5 0.4 0.35 0.3 0.25 0.2 0.15 0.1 Ø.05 -0.1 -0.2 0.2 0.3 0.4 0.5 0.6 -0.3 10.1 0.7 -0.05 -0.1 0.15

real part

imaginary part

GAPS T. Sheet 1 (= e)			[realpart] R exp(±i)cos =	[imaginary part] R exp(±i)cos =	c exp(+)cos =	ћ exp(-)cos =	ħ/c
w = /sin	value of [w_1	-asin(/w)	Pwein cos(w cos)cos(w sin)	i Rwein sin(w cos)cos(w sin)	cwein exp(w cos)cos(w sin)	5 wein exp(-w cos)cos(w sin)	
w = /3iii		-ci3ii i(/ vv /					
0	0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
0.001	0.001	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!
0.001001	0.001001	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!
0.001007	0.001001	#110101	#10M		#HUM	#110M	#110101
0.001005	0.001005	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!
0.00101	0.00101	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!
0.00102	0.00102	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!
0.00105	0.00105	#NILIMI	#NI IMI	#NI IMI	#NI IMI	#NI IMI	#NILIMI
0.00103	0.00105	#INUIVI:	#NUM!	#NUM!	#100101:	#NOM:	#INUIVI:
0.0011	0.0011	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!
0.0012	0.0012	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!
0.0015	0.0015	#NI IMI	#NI IMI	#NI IMI	#NI IMI	#NI IMI	#NI IMI
0.002	0.000	#NILIMI	#NU IMI	#NU IMI	#511.15.41	#NU IM	45111541
0.002	0.002	#INUIVI!	#INUM!	#INUIVI!	#INUM!	#INUIVI:	#INUIVI!
0.003	0.003	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!
0.004	0.004	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!
0.005	0.005	#NILIMI	#NI IMI	#NI IMI	#NI IMI	#NI IMI	#NILIMI
0.005	0.005	#INUIVI:	#INUM!	#NOW!	#INUM!	#NUM!	#INUIVI:
0.01	0.01	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!
0.05	0.05	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!
/32	0.09817477	#NI IMI	#NI IMI	#NI IMI	#NI IMI	#NI IMI	#NI IMI
102	0.00010511	#110101	#NU 1641	45111541	450.041	#NU MA	#110101
/16	0.196349541	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!
/8	0.392699082	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!
/4	0.785398163	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!	#NUM!
	0.055216619	1 570706227	0.577250260	2 27067E 17	0.577250260	0.577250260	1
	0.955510010	1.570796327	0.577350269	3.37007E-17	0.577350269	0.577350269	
	0.955316618	1.570796285	0.577350269	2.32462E-08	0.577350292	0.577350246	0.999999919
	0.96	1.471978367	0.571958749	0.054333298	0.63160841	0.522616408	0.82743738
	0.07	1 306578018	0.560502186	0.095154844	0.672722600	0.480611160	0 714426865
	0.97	1.000010010	0.00032100	0.050104044	0.072722099	0.400011109	0.04500000
	0.98	1.345880466	0.549419179	0.122032563	0.700296097	0.452313503	0.645888938
	0.99	1.305314832	0.538434371	0.143091124	0.722369803	0.429678317	0.594817661
1	1	1.270729093	0.527632619	0.16066663	0.741237521	0.410408187	0.553679725
1	1047407554	4 4 40700 4 44	0.021002013	0.10000000	0.000000151	0.410400101	0.404050000
/3	1.04/19/551	1.148/68441	0.478978107	0.219057481	0.808809151	0.342981044	0.424056829
	1.07	1.103566123	0.456755146	0.238921505	0.834658096	0.318344422	0.381406978
	1.1	1.052106942	0.42868808	0.260076352	0.865011729	0.290647133	0.33600369
	1 1 2	1 021632/72	0.41067342	0 27177/008	0.883612036	0.274457624	0 310608/27
	1.12	1.021032472	0.41007342	0.271774330	0.003012330	0.274437024	0.310000427
	1.15	0.980382018	0.384633258	0.286502499	0.909764489	0.252841727	0.277919978
В	1.170019129	0.955316618	0.36787825	0.294767392	0.926327125	0.239896054	0.258975526
	1 27	0 851421497	0 290900989	0.3224704	1 002789845	0 188085814	0 187562544
	1.21	0.001421401	0.250500505	0.0224104	1.002703040	0.100000014	0.107002044
	1.351	0.785414239	0.235716287	0.333331452	1.061223242	0.157056516	0.147995737
	1.37	0.771639616	0.223593362	0.334794073	1.074809295	0.150799834	0.140303805
	1.47	0.70742029	0.164395223	0.337273614	1.146804193	0.122757905	0.107043474
	1.50	0 670620252	0 1274606	0.225810001	1 192590726	0 11124701	0.002001006
	1.52	0.079020352	0.1374606	0.335819001	1.163560736	0.11124701	0.093991900
/2	1.570796327	0.653757546	0.11174974	0.332871812	1.221773346	0.100912046	0.082594735
	1.6	0.639847215	0.097680322	0.330591236	1.244180345	0.095510278	0.076765622
	1.67	0 608997992	0.065946825	0 323619909	1 29943283	0.083943415	0.064600042
	1.07	0.000007002	0.000340023	0.0200103003	1.20040200	0.000340410	0.004000042
	1.77	0.570112671	0.025131944	0.310596354	1.38272882	0.070224695	0.050787034
	1.87	0.536190121	-0.010842846	0.294748388	1.471981573	0.059100047	0.040149991
	1 97	0 506285747	-0.042412154	0 276744742	1 568021604	0.049990665	0.031881363
0 /0	0.004005400	0.470044005	0.070000707	0.2.011112	1.000021001	0.040000400	0.004040004
2 /3	2.094395102	0.473641685	-0.076069727	0.2521209	1.698161648	0.040839193	0.024049061
3 /4	2.35619449	0.417469923	-0.128879952	0.195413014	2.017325515	0.027162839	0.013464777
	2.3859	0.411954356	-0.133470697	0.188748189	2.057930171	0.025967988	0.012618498
	24	0 /00388671	-0 135556308	0 185576642	2 077545318	0.025421456	0.012236204
	2.4	0.403300071	-0.133350590	0.103370042	2.017343310	0.023421430	0.012230234
	2.5	0.392096497	-0.148677051	0.16299916	2.223239969	0.021893089	0.00984738
	2.6	0.376243647	-0.158999886	0.140429725	2.381197626	0.018898671	0.007936624
	2.7	0.361653193	-0.166702249	0.118068284	2.55250487	0.016348552	0.006404905
7 /0	2 740002572	0.25/022152	0 160565979	0 107265607	2 641474222	0.01524002	0.005760954
1 /0	2.140093312	0.354933152	-0.109505878	0.107265807	2.041474223	0.01524092	0.005769654
15 /16	2.945243113	0.330334194	-0.175553741	0.065195922	3.036773569	0.011548317	0.003802825
31 /32	3.043417883	0.319293633	-0.175504095	0.045187092	3.259571628	0.010076036	0.003091215
	3 141592654	0 308979608	-0 173625234	0.026022873	3 501081834	0.008803825	0.002514601
00 100	0.00070746	0.00000150000	-0.170020234	0.020022873	0.301001834	0.000003825	0.0000 1001
33 /32	3.239767424	0.299321533	-0.170065299	0.007807352	3.762925654	0.007702294	0.00204689
17 /16	3.337942194	0.29025782	-0.164971464	-0.009367861	4.046868465	0.006746782	0.001667161
9 /8	3.534291735	0.2737039	-0.150766461	-0.040291189	4.688913737	0.005193933	0.001107705
	20	0.268203300	-0.144074026	_0.040550559	1 020220400	0.004762066	0.000066466
	3.0	0.200303229	-0.1449/4930	-0.049550556	4.320223108	0.004702900	0.000300400
	3.7	0.261152019	-0.13531384	-0.062541908	5.318510742	0.00417811	0.000785579
	3.8	0.25412552	-0.124762882	-0.074171384	5.742747004	0.003668483	0.000638803
5 /4	3.926990817	0.245735071	-0.11031313	-0.0869349	6.335236416	0.003113801	0.000491505
1 10	4 188700205	0.330000004	0.077009669	0.406005336	7 775/20000	0.00000000	0.00039679
4 /3	-1.100/90205	0.20000908/	-0.077998663	-0.106065326	1.115422869	0.002229832	0.00020078
L	4.2068	0.229087204	-0.075697911	-0.107049432	7.886659347	0.002179599	0.000276365
3 /2	4.71238898	0.204139377	-0.011434267	-0.116483173	11.81448683	0.001159515	9.81435E-05
5 /2	5,235987756	0 183470772	0 044458780	-0.095496934	18 1202/137/	0.000612063	3.37611F-05
5 73	5.200001130 F 1105	0.100410112	0.074430703	-0.030430934	10.12324374	0.000012003	0.050005 65
	5.41281	0.177421162	0.05882824	-0.083200706	20.9901511	0.000494666	2.33666E-05
7 /4	5.497787144	0.174650375	0.064764713	-0.076616945	22.52863045	0.000446748	1.98302E-05
	5.59	0.171740424	0.070461207	-0.069069013	24.33137442	0.000400113	1.64443E-05
	E 00	0.160600044	0.07574004	0.000404407	2 100 TOT 442	0.000255454	13/2/15 05
	5.09	0.100092911	0.07574004	-0.060494407	26.45650201	0.000355154	1.04241E-05
	5.79	0.165752166	0.080068211	-0.051608598	28.77464002	0.00031536	1.09596E-05
15 /8	5.890486225	0.162899082	0.083452559	-0.042462648	31.31654202	0.000279961	8.93971E-06
21 /16	6 086835766	0 157500577	0 08739793	-0.024325205	36 075/3705	0 000000000	6 0057E-06
00 /00	6.40504055	0.45503377	0.00720703	-0.02+02000	30.37343783	0.000222003	4.000005 65
63 /32	0.185010537	U.15507758	0.087853732	-0.01529/634	40.19088881	0.000197863	4.92308E-06
2	6.283185307	0.152635344	0.087548167	-0.006406743	43.69528591	0.000176351	4.03594E-06
2.05	6.44026494	0.148884421	0.085325973	0.007341745	49.97031462	0.000146776	2.93726E-06
0.4	6 507344573	0 1/521/075	0.001110454	0.0003/7034	E7 17EE0100	0.000122242	2 138025 00
Z. I	0.091044073	0.140314075	0.001113154	0.020247931	57.17552186	0.000122243	2.13003E-00
2.15	6.754424205	0.141911529	0.075105317	0.032050103	65.45145129	0.000101877	1.55653E-06
2.2	6.911503838	0.138665188	0.067528748	0.042523387	74.96018288	8.49567E-05	1.13336E-06
2.25	7.068583471	0 135564502	0.05863/351	0.051482003	85 88866858	7 0888E-05	8.25348F-07
2.20		0.40404002	0.000004351	0.001402903	105.15555	7.0000E-00	E 10040E CT
	7.3013	0.131218223	0.043612115	0.061680836	105.157731	5.42665E-05	5.16049E-07
2.35	7.382742736	0.129762463	0.037980578	0.064333574	112.9008143	4.94357E-05	4.37869E-07
2.4	7.539822369	0.12704428	0.02678841	0.068070413	129.5205604	4.13154E-05	3.18988E-07
0.45	7 606000004	0 10/ 407004	0.045000007	0.000004074	440 640057	2 4E4E0E 05	2 324005 07
2.45	1.090902001	0.124437931	0.015399927	0.069984674	148.643357	3.45459E-05	2.32408E-07
2.5	7.853981634	0.121936635	0.004092991	0.070106443	170.6519487	2.8899E-05	1.69345E-07

2.55	8.011061267	0.119534151	-0.006867597	0.06850547	195.9882794	2.4186E-05	1.23405E-07
2.6	8.168140899	0.117224724	-0.017235414	0.065288152	225.1627324	2.02503E-05	8.99361E-08
2.65	8.325220532	0.115003039	-0.026787173	0.060593832	258.7648218	1.6962E-05	6.55498E-08
	8.5232	0.112320287	-0.037363085	0.052835854	308.4878162	1.35747E-05	4.4004E-08
2.75	8.639379797	0.110803582	-0.042688954	0.047470097	342.0818142	1.19146E-05	3.48296E-08
2.8	8 706/50/3	0 108817027	-0.04874138	0.0304/3272	303 /028102	9.99127E-06	2 53012E - 08
2.0	0.73040340	0.100000585	0.053386084	0.000770272	452,75044	9.3914E 06	1.951195 09
2.03	0.953539063	0.100900565	-0.053366964	0.030734129	452.75944	6.3814E-00	1.00110E-00
2.9	9.110618695	0.105050601	-0.056564692	0.021574678	521.0963633	7.03331E-06	1.34971E-08
2.95	9.267698328	0.103263671	-0.058249649	0.012199349	599.90784	5.90398E-06	9.84148E-09
3	9.424777961	0.10153662	-0.058452584	0.002839608	690.81749	4.95756E-06	7.17636E-09
3.05	9.581857593	0.099866482	-0.05721842	-0.006281191	795.7028214	4.16412E-06	5.23326E-09
3.1	9.738937226	0.098250487	-0.05462415	-0.014952632	916.7352144	3.4987E-06	3.81648E-09
3 15	9 896016859	0.096686037	-0.050776082	-0.022981623	1056 42624	2 94045E-06	2 78339E-09
2.2	10.05200640	0.005170704	0.045906407	0.020106272	1217 691222	2 471055 06	2.02005E 00
3.2	10.05309649	0.095170704	-0.045606497	-0.030198272	1217.001323	2.47 195E-08	2.03005E-09
3.25	10.21017612	0.093702205	-0.039869825	-0.036449178	1403.861914	2.07866E-06	1.48067E-09
	10.42394	0.091775182	-0.030549776	-0.04320184	1704.365778	1.64266E-06	9.63794E-10
3.35	10.52433539	0.090897275	-0.025798143	-0.045617803	1867.169263	1.47096E-06	7.87801E-10
3.4	10.68141502	0.089556938	-0.018043525	-0.048381537	2154.006498	1.23785E-06	5.74674E-10
3.45	10.83849465	0.088255606	-0.010073182	-0.049881336	2485.399101	1.04193E-06	4.19221E-10
3.5	10.99557429	0.086991598	-0.00208503	-0.050117948	2868.327393	8.77221E-07	3.0583E-10
3 55	11 15265392	0.08576333	0.005728269	-0.049121935	3310 872852	7 38711E-07	2 23117E-10
3.55	11.102000052	0.00370335	0.003720203	-0.049121933	3310.072032	6.332055 07	2.20TT/E-10
3.0	11.30973335	0.084309303	0.01316303	-0.040952155	3822.392817	0.22203E-07	1.02779E-10
3.65	11.46681319	0.083408108	0.020111541	-0.043693525	4413.723055	5.24183E-07	1.18762E-10
	11.6503	0.082091486	0.02733358	-0.038654512	5222.417795	4.29168E-07	8.21781E-11
	11.7541	0.081364928	0.030928415	-0.035289067	5744.471506	3.83305E-07	6.67259E-11
3.75	11.78097245	0.081178925	0.031795811	-0.034363904	5887.996276	3.72258E-07	6.32231E-11
3.8	11.93805208	0.080108476	0.036310738	-0.028567132	6802.310245	3.13798E-07	4.61311E-11
3.85	12.09513172	0.079065918	0.039819866	-0.022222649	7859 858653	2 64568E-07	3.36607F-11
2.00	12 25221125	0.078050175	0.040064746	0.015/0770	0002 220275	2.040002-07	2 /5625 44
3.8	12.20221130	0.077000000	0.042204740	-0.01549/78	9003.2383/5	2.23102E-07	2.+002E-11
3.95	12.40929098	0.077060226	0.043613746	-0.008564593	10498.63191	1.88168E-07	1.79231E-11
4	12.56637061	0.076095097	0.04386212	-0.00159575	12136.37915	1.58732E-07	1.3079E-11
4.05	12.72345025	0.075153868	0.043031458	0.005239566	14031.64064	1.33923E-07	9.54436E-12
4.1	12.88052988	0.074235659	0.041168533	0.011779541	16225.1672	1.1301E-07	6.9651E-12
4.15	13.03760951	0.073339637	0.038343599	0.01787336	18764.1928	9.53779E-08	5.08297E-12
4.2	13,19468915	0.072465005	0.034648171	0.0233845	21703.4707	8.05093E-08	3.70951E-12
4.25	13 35176878	0.071611007	0.03010237	0.028193609	25106 47578	6 79689E- 08	2 70722E-12
4.20	13.33170878	0.071011007	0.03019237	0.028193009	25100.47578	0.79089E-08	4.700005 40
	13.55537	0.070533611	0.02349245	0.033221779	30329.12287	5.45872E-08	1.79983E-12
4.35	13.66592804	0.069962054	0.019514667	0.035328183	33609.77136	4.84652E-08	1.442E-12
4.4	13.82300768	0.069165753	0.013577351	0.037519969	38894.33445	4.09338E-08	1.05244E-12
4.45	13.98008731	0.068387389	0.007441626	0.038744527	45015.23128	3.45775E-08	7.6813E-13
4.5	14.13716694	0.067626362	0.001260514	0.038993977	52105.53437	2.92122E-08	5.60636E-13
4 55	14 29424657	0.066882099	-0.004815281	0.038283976	60319 58666	2 46827E-08	4 09199E - 13
4.6	14 45122621	0.066154051	0.010640800	0.026652820	60826 41484	2.09592E.09	2.09672E 12
4.0	14.45132021	0.000134031	-0.010040899	0.030052839	09030.41464	2.085822-08	2.90072E-13
4.65	14.60840584	0.065441695	-0.016080633	0.034160138	80863.69218	1.76285E-08	2.18002E-13
	14.78352	0.064665434	-0.021539352	0.030462884	95233.74315	1.46159E-08	1.53474E-13
4.75	14.9225651	0.064062067	-0.025323217	0.026922985	108451.8693	1.25965E-08	1.16148E-13
4.8	15.07964474	0.063393853	-0.028925875	0.022385124	125616.5871	1.06499E-08	8.47807E-14
4.85	15.23672437	0.062739445	-0.031746363	0.017393306	145512.799	9.00511E-09	6.18853E-14
4.9	15.393804	0.062098418	-0.03373241	0.01207798	168577.1774	7.61522E-09	4.51735E-14
4 95	15 55088364	0.061470366	-0.034852875	0.006574708	195316 4792	6 44057E-09	3 29751E - 14
5	15 70706227	0.060854800	0.035008068	0.001030838	226210 0225	E 4477E 00	2.40700E 14
5.05	15.70790327	0.000854899	-0.035098008	0.001020828	220318.8323	5.4477E-09	2.40709E-14
5.05	15.8650429	0.060251641	-0.034479556	-0.004447853	262266.847	4.60837E-09	1./5/13E-14
5.1	16.02212253	0.059660233	-0.033029465	-0.009700273	303952.8426	3.89877E-09	1.28269E-14
5.15	16.17920217	0.05908033	-0.030799316	-0.01461315	352296.54	3.29876E-09	9.36359E-15
5.2	16.3362818	0.058511597	-0.02785842	-0.019073779	408365.6119	2.79137E-09	6.83547E-15
5.25	16.49336143	0.057953716	-0.024291877	-0.022982522	473399.5587	2.36226E-09	4.98999E-15
	16.69062	0.057268034	-0.019079504	-0.026981238	570000.481	1.91581E-09	3.36107E-15
5 35	16 8075207	0.056869289	-0.015686934	-0.028823551	636350 1479	1 69227E-09	2 65934F - 15
5.55 E A	16 06/60022	0.0563/2161	_0.010075272	0.020020001	707077 7704	1 400525 00	1 9/1/1 = 15
5.4	10.90400033	0.036342161	-0.010675373	-0.030639083	131811.1101	1.43232E-09	1.94141E-15
5.45	17.12167996	0.05582472	-0.005886064	-0.0316/1365	855673.1932	1.21275E-09	1.41/31E-15
5.5	17.27875959	0.055316702	-0.000843544	-0.03190968	992352.6274	1.02679E-09	1.0347E-15
5.55	17.43583923	0.054817851	0.004128629	-0.03136267	1150954.381	8.6942E-10	7.5539E-16
5.6	17.59291886	0.054327922	0.008910826	-0.030057788	1335007.153	7.36231E-10	5.51481E-16
5.65	17.74999849	0.053846676	0.013390147	-0.0280403	1548609.412	6.23498E-10	4.02618E-16
	17.9197	0.053336256	0.017769775	-0.025131421	1818092.052	5.2107E-10	2.86603E-16
5.75	18.06415776	0.05290933	0.021037463	-0.022128875	2084273.557	4.47284E-10	2.14599E-16
5.8	18 22123739	0.052452794	0 024035225	-0.018400156	2418288 769	3 78887E-10	1 56676E - 16
5.9E	19 27921702	0.052004074	0.026202202	0.014284828	2906020 628	2 200745 10	1.14297E 16
5.65	10.57651702	0.052004074	0.020393292	-0.014284828	2000029.020	3.20974E-10	1.14387E-10
5.9	10.00039000	0.001002908	0.028005217	-0.009889643	3200105.65	2./1934E-10	0.00100E-1/
5.95	18.69247629	0.051129287	0.029021934	-0.005326313	3778769.3	2.30404E-10	6.09732E-17
6	18.84955592	0.050702842	0.029252174	-0.000708738	4385543.592	1.95231E-10	4.45168E-17
6.05	19.00663555	0.050283455	0.028762438	0.003849768	5090086.709	1.65439E-10	3.25022E-17
6.1	19.16371519	0.049870952	0.027576545	0.008239197	5908199.655	<u>1</u> .40203E-10	2.37303E-17
6.15	19.32079482	0.049465165	0.025734782	0.012355439	6858243.967	1.18826E-10	1.7326E-17
62	19 47787445	0.049065931	0.023202650	0.016102695	7061557 633	1.00715E-10	1.26501F-17
6.2 6.25	19 63405409	0.048673092	0.02020202000	0.010305640	02/2028 227	8 53607E 11	9 2362 - 10
0.20	10.00430400	0.040400457	0.020019333	0.019395040	3242330.121	0.00097E-11	6.07074E
	19.82787	0.048199157	0.016060841	0.022712026	11103108.7	6.9691E-11	0.2/6/1E-18
6.35	19.94911335	0.047905995	0.013112387	0.02434081	12459861.77	6.13498E-11	4.92379E-18
6.4	20.10619298	0.047531446	0.009067144	0.025890141	14467834.61	5.20128E-11	3.59506E-18
6.45	20.26327262	0.047162711	0.004862657	0.026781438	16800381.65	4.40996E-11	2.62492E-18
6.5	20.42035225	0.046799655	0.000603846	0.02700318	19510108.24	3.73927E-11	1.91658E-18
6.55	20.57743188	0.046442147	-0.003604661	0.026560259	22658166 11	3.17078F-11	1.3994E-18
4.4	20 73451151	0.046090062	-0.007661050	0.025472611	263156// 70	2 62222 11	1 02178 - 10
0.0	20.00450445	0.045740070	-0.007001059	0.023473011	20515044.70	2.00000E-11	7 460645 40
0.00	20.09109115	0.040/402/0	-0.011408/76	0.023779473	3000190.01	2.28036E-11	7.40004E-19
	of 0	0.045000500	A A 4 5 1				E OFACOT
	21.05754	0.045382539	-0.015122898	0.021385783	35804410.45	1.91612E-11	5.35162E-19
6.75	21.05754 21.20575041	0.045382539 0.045065137	-0.015122898 -0.017991348	0.021385783 0.018783204	35804410.45 41240446.32	1.91612E-11 1.64037E-11	5.35162E-19 3.97758E-19
6.75 6.8	21.05754 21.20575041 21.36283004	0.045382539 0.045065137 0.044733554	-0.015122898 -0.017991348 -0.020558395	0.021385783 0.018783204 0.01561851	35804410.45 41240446.32 47907758.8	1.91612E-11 1.64037E-11 1.39139E-11	5.35162E-19 3.97758E-19 2.90432E-19

6.9	21.67698931	0.044084818	-0.024027864	0.008370538	64660335.65	1.00124E-11	1.54846E-19
6.95	21.83406894 21.99114858	0.043767458	-0.024862006 -0.025075246	0.00447249	87288580.56	8.4941E-12 7.20643E-12	8.25587E-20
7.05	22.14822821	0.043146254	-0.024671247	-0.003387875	101425970.9	6.11429E-12	6.02833E-20
7.1	22.30530784	0.042842221	-0.023668613 -0.02210023	-0.007158293	117858757.7	5.18794E-12 4 40217E-12	4.40183E-20
7.2	22.61946711	0.042246833	-0.020012272	-0.013931501	159165490.7	3.73559E-12	2.34699E-20
7.25	22.77654674	0.041955304	-0.017462898	-0.016776537	184979125.9	3.17011E-12	1.71377E-20
7.35	22.96632	0.041608422	-0.013865917	-0.019608425	249878884.7	2.60005E-12 2.28333E-12	9.13776E-21
7.4	23.24778564	0.041104374	-0.007773043	-0.022415453	290443766.1	1.93797E-12	6.67246E-21
7.45	23.40486527	0.040828352	-0.004139743	-0.023199252	337608682.7	1.64493E-12	4.8723E-21
7.55	23.71902453	0.040387285	0.003194983	-0.023033046	456218457.2	1.18524E-12	2.59797E-21
7.6	23.87610417	0.040022095	0.006717145	-0.022102435	530371358.5	1.00616E-12	1.89708E-21
7.65	24.0331838	0.039760374	0.010028649	-0.020642456 -0.018611561	616602600.2 721061242.5	8.54172E-13 7.20614E-13	1.38529E-21 9.9938E-22
7.75	24.34734307	0.039247071	0.015715308	-0.016315935	833506983.9	6.15688E-13	7.38672E-22
7.8	24.5044227	0.03899536	0.017959973	-0.01356694	969141959.1	5.22754E-13	5.39398E-22
7.85	24.66150233	0.038746857	0.019735937	-0.007254958	1310373284	4.43866E-13 3.76899E-13	2.87627E-22
7.95	24.9756616	0.038259235	0.021744926	-0.00385269	1523786374	3.20048E-13	2.10035E-22
8	25.13274123	0.03802	0.021941949	-0.00039857	1772024374	2.71784E-13	1.53375E-22
8.1	25.76105976	0.037092252	0.017541568	0.000320393	3242004554	1.41394E-13	4.36133E-23
8.3	26.10557	0.036602532	0.012197659	0.017251072	4516111813	9.88422E-14	2.18866E-23
8.4	26.38937829 26.70353756	0.036208712	0.006801468	0.019762912	5934809792 8031436594	7.36052E-14 5.31181E-14	1.24023E-23
8.6	27.01769682	0.035366293	-0.00597952	0.01951913	10870204665	3.83388E-14	3.52697E-24
	27.33569	0.034954713	-0.01164878	0.01647475	14768762068	2.75657E-14	1.86649E-24
8.8	27.64601535 27.96017462	0.03456219	-0.015944503 -0.018658869	0.0011991495	26971589654	1.99808E-14 1.44274E-14	5.3491E-25
9	28.27433388	0.033793846	-0.019504631	0.000314899	36523340945	1.04188E-14	2.85264E-25
9.1	28.58849315	0.033422346	-0.018441394	-0.005668106	49463670139	7.52497E-15	1.52131E-25
9.2	28.90265241	0.033058926	-0.010888213	-0.015398987	93286012501	3.81281E-15	4.08723E-26
9.4	29.53097094	0.032355296	-0.006045381	-0.017671635	1.22952E+11	2.83716E-15	2.30754E-26
9.5	29.84513021	0.032014597	-0.000282617	-0.018478318	1.66589E+11	2.05012E-15	1.23065E-26
3.0	30.47561	0.03135206	0.010449319	-0.014776838	3.06563E+11	1.06844E-15	3.48522E-27
9.8	30.78760801	0.031034239	0.014335643	-0.010743724	4.1463E+11	7.74036E-16	1.86681E-27
9.9	31.10176727 31.41592654	0.030720663	0.016783606	-0.005726953 -0.000255057	5.62023E+11 7.61887E+11	5.59563E-16 4.0456E-16	9.95623E-28
10.3	32.38531	0.029502735	0.009833186	0.013905446	1.9493E+12	1.48798E-16	7.63341E-29
10.5	32.98672286	0.02896469	0.00023134	0.016718833	3.49293E+12	8.00396E-17	2.29147E-29
11.7	34.55751919	0.028422505	-0.015959022	0.000210784	1.6049E+13	1.58723E-17	9.8899E-31
11.3	35.52566	0.026894132	-0.008963919	-0.012676283	4.1121E+13	5.86173E-18	1.42548E-31
11.5	36.12831552	0.026445406	-0.00019285 0.008663876	-0.015265265 -0.012251842	7.38892E+13 1.36112E+14	3.15426E-18 1.65431E-18	4.2689E-32
12	37.69911184	0.025343273	0.014629307	-0.000177112	3.40811E+14	6.28054E-19	1.84282E-33
12.3	38.66621	0.02470927	0.008235838	0.011646698	8.7428E+14	2.32734E-19	2.662E-34
12.5	39.26990817 39.8968	0.024329338	-0.007981261	0.011287851	2.90162E+15	6.58653E-20	2.26995E-35
13	40.8407045	0.02339342	-0.013504122	0.000150909	7.28674E+15	2.50296E-20	3.43495E-36
13.3	41.80691	0.022852676	-0.00761719	-0.010771709	1.87115E+16 3 37684E+16	9.30185E-21 5.00836E-21	4.9712E-37
13.7	43.0376	0.022199079	0.007399247	-0.010463772	6.2248E+16	2.63847E-21	4.23864E-38
	43.288296	0.022070496	0.009707743	-0.008252412	7.95254E+16	2.04139E-21	2.56697E-38
14	43.96229715	0.021722189	0.01253965	0.010019356	4.0276E+17	3.73861E-22	9.28249E-40
14.5	45.55309348	0.020973036	0.000121299	0.012107293	7.28073E+17	2.01355E-22	2.76559E-40
14.7	46.17848	0.020688961	-0.006896064	0.009752007	1.3425E+18	1.06262E-22	7.91527E-41
15.3	48.08867	0.019867039	-0.006622158	-0.009364621	8.71097E+18	1.51015E-23	1.73362E-42
15.5	48.69468613	0.019619757	-0.000106151	-0.011326248	1.57713E+19	8.1347E-24	5.1579E-43
15.7	48.886015	0.01954296	0.002042012	-0.011096084 -0.009131293	1.90228E+19 2.90864E+19	6.6916E-24 4.2998E-24	<u>3.51767E-43</u> 1.47829E-43
16	50.26548246	0.019006565	0.010972332	-9.96196E-05	7.35183E+19	1.63771E-24	2.22763E-44
16.3	51.22968	0.018648799	0.006216144	0.00879045	1.89219E+20	6.12585E-25	3.23745E-45
16.7	52.460448	0.018430342	-0.006069994	0.00858444	6.3279E+20	1.74683E-25	2.76051E-46
17	53.40707511	0.017888408	-0.01032695	8.82436E-05	1.60205E+21	6.65734E-26	4.15552E-47
17.3	54.37081 54 97787144	0.017571299	-0.005856592 -8.32728E-05	-0.00828291 -0.010031915	4.1259E+21 7.48825E+21	2.49415E-26 1.34406E-26	6.04512E-48
17.7	55.60159	0.017182308	0.005727408	-0.008099239	1.38165E+22	7.12197E-27	5.15468E-49
18	56.54866776	0.016894511	0.009753269	-7.87105E-05	3.50295E+22	2.71578E-27	7.75284E-50
18.3	57.51189 58.11946409	0.016611531	0.005537151 7.45132E-05	0.007830229 0.009489683	9.02567E+22 1.6399E+23	1.01901E-27 5.49177E-28	1.12901E-50 3.34884E-51
18.7	58.74269	0.016263449	-0.005420739	0.007666446	3.02611E+23	2.91327E-28	9.6271E-52
19	59.69026042	0.016005248	-0.00923997	7.06428E-05	7.6827E+23	1.11135E-28	1.44657E-52
19.3	61.26105675	0.015594823	-6.70664E-05	-0.007424698	3.60169E+24	2.2506E-29	6.24874E-54
19.7	61.88388	0.015437858	0.005145525	-0.007277345	6.64713E+24	1.19504E-29	1.79784E-54
20	62.83185307 628.3185307	0.015204922	0.008777996 0.000877823	-6.37548E-05 -6.37517E-07	1.68958E+25 6.5821E+269	4.56073E-30 1 1707E-276	2.69932E-55
0.961835 E+25	3.02169E+25	3.16153E-26	#NUM!	#NUM!	#NUM!) #NUM!
			Graph.1	Graph.2	Graph.3	Graph.4	

case		(w =48.87668)	[c] exp(+)cos =	[抪] exp(-)cos =	ratio
= w sin	value of []	=asin(/w)	wsin exp(w cos)cos(w sin)	wsin exp(-w cos)cos(w sin)	
0	0	0	0	0	#DIV/0!
/2×0.0000000000553261063	8.6906E-12	1.77807E-13	299792458.2	1.05457E-34	3.51767E-43
/2×0.000000292757	4.59862E-08	9.40861E-10	1.58635E+12	5.58024E-31	3.51767E-43
/2 × 0.00001312066853	2.06099E-05	4.21671E-07	7.10962E+14	2.50093E-28	3.51767E-43
0.001	0.001	2.04597E-05	3.44961E+16 3.45306E+16	1.21346E-26 1.21467E-26	3.51767E-43
0.001005	0.001005	2.0562E-05	3.46686E+16	1.21953E-26	3.51767E-43
0.00101	0.00101	2.06643E-05	3.48411E+16	1.2256E-26	3.51767E-43
0.00102	0.00102	2.08688E-05	3.51861E+16	1.23773E-26	3.51767E-43
0.00105	0.00105	2.14826E-05	3.62209E+16	1.27413E-26	3.51767E-43
0.0011	0.0011	2.25056E-05	3.79457E+16	1.33481E-26	3.51767E-43
0.0012	0.0012	2.45516E-05 3.06895E-05	4.13954E+16 5 17442E+16	1.45615E-26 1.82019E-26	3.51767E-43
0.002	0.002	4.09193E-05	6.89922E+16	2.42692E-26	3.51767E-43
0.003	0.003	6.1379E-05	1.03488E+17	3.64037E-26	3.51767E-43
0.004	0.004	8.18386E-05	1.37984E+17	4.85381E-26	3.51767E-43
0.005	0.005	0.000102298	1.72479E+17	6.06723E-26	3.51767E-43
0.01	0.01	0.000204597	<u>3.44944E+17</u>	1.2134E-25	3.51768E-43
/32	0.05	0.001022983	1.72261E+18 3.37001E+18	6.05988E-25 1 18569E-24	3.51785E-43
/ 0L	0.12	0.002455161	4.10916E+18	1.44589E-24	3.51871E-43
	0.15	0.003068953	5.11514E+18	1.80017E-24	3.51929E-43
	0.17	0.003478148	5.7781E+18	2.03375E-24	3.51975E-43
/16	0.196349541	0.004017255	6.64054E+18	2.33777E-24	3.52045E-43
	0.25	0.005114936	8.3506E+18	2.94122E-24	3.52217E-43
	0.3	0.006137935	9.87753E+18 1 13275E+19	3.48099E-24 3.99463E-24	3.52415E-43
/8	0.392699082	0.008034574	1.24957E+19	4.40947E-24	3.52879E-43
	0.47	0.009616186	1.44225E+19	5.09636E-24	3.53361E-43
	0.55	0.011253048	1.61249E+19	5.70741E-24	3.53951E-43
	0.63	0.012889939	1.74894E+19	6.20235E-24	3.54635E-43
	0.71	0.014526866	1.84785E+19	6.56751E-24	3.55414E-43
/4	0.785398163	0.016069667	1.90373E+19	6.78175E-24	3.56235E-43
	0.81	0.017186956	1.92018E+19	6.85279E-24	3.56882E-43
	0.87	0.01780084	1.9203E+19	6.86043E-24	3.57257E-43
	0.9	0.01841473	1.91396E+19	6.84519E-24	3.57646E-43
	0.93	0.019028627	1.90104E+19	6.80663E-24	3.58048E-43
	0.935	0.019130944	1.89824E+19	6.79791E-24	3.58116E-43
	0.94	0.019233261	1.89526E+19 1.80200E+19	6.78853E-24	3.58185E-43
	0.95	0.019437896	1.88873E+19	6.76777E-24	3.58323E-43
	0.955	0.019540214	1.88519E+19	6.7564E-24	3.58393E-43
	0.9551	0.01954226	1.88512E+19	6.75617E-24	3.58395E-43
	0.9552	0.019544306	1.88505E+19	6.75593E-24	3.58396E-43
e	0.955316618	0.019546693	1.88496E+19	6.75566E-24	3.58398E-43
e × 1.000000000000000	0.955316618	0.019546693	1.88496E+19 1 88146E+19	6.75566E-24 6.74436E-24	3.58398E-43 3.58463E-43
	0.90	0.019847168	1.87344E+19	6.71826E-24	3.58605E-43
	0.98	0.020051805	1.86467E+19	6.68947E-24	3.58748E-43
	0.99	0.020256443	1.85515E+19	6.65798E-24	3.58893E-43
1	1	0.020461082	1.84486E+19	6.62378E-24	3.59039E-43
/3	1.047197551	0.02142694	1.78606E+19	6.42535E-24	3.5975E-43
	1.07	0.02189358	1.75154E+19 1 70003E+19	6.13005E-24	3.60105E-43
	1.12	0.022916819	1.66182E+19	5.99774E-24	3.60913E-43
	1.15	0.023530774	1.59871E+19	5.77802E-24	3.61416E-43
В	1.170019129	0.023940474	1.55273E+19	5.61714E-24	3.6176E-43
	1.27	0.025986686	1.27677E+19	4.64195E-24	3.63571E-43
	1.351	0.027644515	9.97318E+18	3.64175E-24	3.65154E-43
	1.37	0.028033399	9.24005E+16 4.99108E+18	1.83508E-24	3.67672E-43
	1.48	0.030284918	4.52658E+18	1.6653E-24	<u>3.67894E-</u> 43
	1.49	0.030489609	4.05518E+18	1.49278E-24	3.68118E-43
	1.5	0.030694302	3.57694E+18	1.31754E-24	3.68343E-43
	1.51	0.030898995	3.0919E+18	1.13958E-24	3.6857E-43
	1.52	0.03110369	2.60012E+18	9.58919E-25	3.68799E-43
	1.53	0.031513084	2.10165E+18 1 59655E+18	7.75569E-25 5.89544E-25	3.69261F-43
	1.55	0.031717783	1.08488E+18	4.00857E-25	3.69495E-43
	1.56	0.031922483	5.66694E+17	2.09523E-25	3.6973E-43
/2 × 0.9999999999890292	1.570796327	0.032143485	9105079932	3.36875E-33	3.69986E-43
/2 × 0.999999999996476	1.570796327	0.032143485	292477868.7	1.08213E-34	3.69986E-43
12	1.570796327	0.032143485	3236.565649	1.19748E-39	3.09986E-43

case		(w =48.886015)	[c] exp(+)cos =	[抪] exp(-)cos =	ratio
= w sin	value of []	=asin(/w)	wsin exp(w cos)cos(w sin)	wsin exp(-w cos)cos(w sin)	
0	0	0	0	0	#DIV/0!
/2 × 0.0000000000553261063	8.6906E-12	1.77773E-13	302546340.3	1.04457E-34	3.4526E-43
/2 × 0.000000292757	4.59862E-08	9.40681E-10	1.60092E+12	5.52734E-31	3.4526E-43
72 × 0.00001312066853	2.06099E-05 0.001	4.21591E-07 2.04557E-05	7.17493E+14 3.4813E+16	<u>2.47722</u> E-28 1 20196E-26	3.4526E-43
0.001001	0.001001	2.04762E-05	3.48478E+16	1.20316E-26	3.45261E-43
0.001005	0.001005	2.0558E-05	3.49871E+16	1.20797E-26	3.45261E-43
0.00101	0.00101	2.06603E-05	3.51611E+16	1.21398E-26	3.45261E-43
0.00102	0.00102	2.08649E-05	3.55093E+16	1.226E-26	3.45261E-43
0.00105	0.00105	2.14785E-05	3.65537E+16	1.26205E-26	3.45261E-43
0.0011	0.0011	2.25013E-05	<u>3.82943E+16</u>	1.32215E-26	3.45261E-43
0.0012	0.0012	2.45489E-05	5 22195E+16	1.44233E-20	345261E-43
0.002	0.002	4.09115E-05	6.96259E+16	2.40391E-26	3.45261E-43
0.003	0.003	6.13672E-05	1.04439E+17	3.60585E-26	3.45261E-43
0.004	0.004	8.1823E-05	1.39251E+17	4.80779E-26	3.45261E-43
0.005	0.005	0.000102279	1.74063E+17	6.00971E-26	3.45261E-43
0.01	0.01	0.000204557	3.48113E+17	1.2019E-25	3.45261E-43
0.05	0.05	0.001022788	1.73843E+18 2.40007E+18	6.00243E-25	3.45278E-43
/32	0.09017477	0.00200824	4 14691F+18	1.17445E-24 1.43219E-24	3.45362E-43
	0.15	0.003068367	5.16213E+18	1.7831E-24	<u>3.4</u> 5419E-43
	0.17	0.003477484	5.83118E+18	2.01447E-24	3.45465E-43
/16	0.196349541	0.004016488	6.70154E+18	2.3156E-24	3.45533E-43
	0.25	0.005113959	8.42731E+18	2.91334E-24	3.45702E-43
	0.3	0.006136763	9.96827E+18	3.44799E-24	3.45897E-43
	0.35	0.007159573	1.14315E+19	3.95675E-24	3.46127E-43
/8	0.392699082	0.00803304	1.26105E+19	4.36766E-24 5.04804E-24	3.46351E-43
	0.47	0.011250899	1.4555E+19	5.6533E-24	347404E-43
	0.63	0.012887478	1.765E+19	6.14354E-24	3.48075E-43
	0.71	0.014524092	1.86482E+19	6.50523E-24	3.48839E-43
/4	0.785398163	0.016066598	1.92122E+19	6.71744E-24	3.49645E-43
	0.81	0.016569914	1.93128E+19	6.75805E-24	3.49926E-43
	0.84	0.017183674	1.93782E+19	6.78781E-24	3.5028E-43
	0.87	0.01779744	<u>1.93795E+19</u>	6.79537E-24	3.50648E-43
	0.9	0.018411213	1.93154E+19 1.91851E+19	6.78028E-24 6.74209E-24	3.51029E-43
	0.935	0.019127291	1.91568E+19	6.73345E-24	3.51491E-43
	0.94	0.019229588	1.91267E+19	6.72416E-24	3.51558E-43
	0.945	0.019331886	1.90947E+19	6.71421E-24	3.51626E-43
	0.95	0.019434184	1.90609E+19	6.7036E-24	3.51694E-43
	0.955	0.019536482	1.90251E+19	6.69233E-24	3.51763E-43
	0.9551	0.019538528	<u>1.90244E+19</u>	6.6921E-24	3.51764E-43
٩	0.955316618	0.019540574	1.90237E+19	6.09187E-24	3.51767E-43
e × 1.0000000000000	0.955316618	0.01954296	1.90228E+19	6.6916E-24	3.51767E-43
	0.96	0.01963878	1.89875E+19	6.6804E-24	3.51832E-43
	0.97	0.019843378	1.89066E+19	6.65455E-24	3.51971E-43
	0.98	0.020047976	1.8818E+19	6.62604E-24	3.52111E-43
	0.99	0.020252575	1.87219E+19	6.59485E-24	3.52253E-43
1	1 047407554	0.020457175	1.86181E+19	6.56097E-24	3.52397E-43
13	1.047 197551	0.021422848	1.8024/E+19 1.7676/F±10	6.36442E-24 6.24750F-24	3.53094E-43
	1.1	0.022503222	1.71565E+19	6.07192E-24	3.53914E-43
	1.12	0.022912442	1.67709E+19	5.94086E-24	3.54236E-43
	1.15	0.02352628	1.6134E+19	5.72322E-24	3.5473E-43
В	1.170019129	0.023935902	1.56699E+19	5.56387E-24	3.55067E-43
	1.27	0.025981723	1.2885E+19	4.59792E-24	3.56844E-43
	1.351	0.027639234	1.00648E+19	3.60721E-24	3.58397E-43
	1.37	0.028028044	9.33162E+18 5.03605E±18	3.34/97E-24 1 81767E-24	3.58///E-43
	1.47	0.030279134	4.56818E+18	1.64951E-24	3.61086E-43
	1.49	0.030483785	4.09245E+18	1.47862E-24	3.61305E-43
	1.5	0.030688439	3.60981E+18	1.30504E-24	3.61527E-43
	1.51	0.030893093	3.12031E+18	1.12877E-24	3.61749E-43
	1.52	0.031097749	2.62401E+18	9.49824E-25	3.61974E-43
	1.53	0.031302406	2.12096E+18	7.68213E-25	3.622E-43
	1.54	0.031507064	1.61122E+18	5.83952E-25	3.62427E-43
	1.55	0.031/11/24	1.09485E+18 5.71002E+17	3.97055E-25 2.07536E-25	3.6265/E-43
/2 × 0.999999999890292	1.570796327	0.032137345	9188775010	3.3368F-33	3.63139E-43
/2×0.999999999996476	1.570796327	0.032137345	295142303.7	1.07178E-34	<u>3.63139E</u> -43
/2	1.570796327	0.032137345	15105.97209	5.48556E-39	3.63139E-43

case		(w =48.901915)	[c] exp(+)cos =	[抗] exp(-)cos =	ratio ち/c=3.51767E-43
= w sin	value of []	=asin(/w)	wsin exp(w cos)cos(w sin)	wsin exp(-w cos)cos(w sin)	
0	0	0	0	0	#DIV/0!
/2 × 0.0000000000553261063	8.6906E-12	1.77715E-13 9.40375E-10	307295327.3 1.62605E±12	1.02776E-34	3.34454E-43
/2 × 0.00001312066853	2.06099E-05	4.21454E-07	7.28755E+14	2.43735E-28	3.34454E-43
0.001	0.001	2.04491E-05	3.53595E+16	1.18261E-26	3.34454E-43
0.001001	0.001001	2.04695E-05	3.53948E+16	1.18379E-26	3.34454E-43
0.001005	0.001005	2.05513E-05	3.55363E+16 3.57131E+16	1.18852E-26	3.34454E-43
0.00102	0.00102	2.08581E-05	3.60667E+16	1.20626E-26	3.34454E-43
0.00105	0.00105	2.14716E-05	3.71274E+16	1.24174E-26	3.34454E-43
0.0011	0.0011	2.2494E-05	3.88954E+16	1.30087E-26	3.34454E-43
0.0012	0.0012	2.45389E-05	4.24314E+16	1.41913E-26	3.34454E-43
0.0013	0.002	4.08982E-05	7.07188E+16	2.36522E-26	3.34454E-43
0.003	0.003	6.13473E-05	1.06078E+17	3.54782E-26	3.34454E-43
0.004	0.004	8.17964E-05	1.41437E+17	4.73041E-26	3.34454E-43
0.005	0.005	0.000102245	1.76795E+17 3.53577E+17	5.91299E-26	3.34454E-43
0.05	0.05	0.001022455	1.76572E+18	5.90582E-25	3.34471E-43
/32	0.09817477	0.002007587	3.45435E+18	1.15555E-24	3.3452E-43
	0.12	0.002453894	4.212E+18	1.40914E-24	3.34552E-43
	0.15	0.003067369	5.24316E+18	1.7544E-24	3.34608E-43
/16	0.196349541	0.003476353	6.80673E+18	2.27833E-24	3.34652E-43 3.34718E-43
	0.25	0.005112297	8.55959E+18	2.86645E-24	3.34882E-43
	0.3	0.006134768	1.01247E+19	3.3925E-24	3.3507E-43
	0.35	0.007157245	1.1611E+19	3.89307E-24	3.35293E-43
/8	0.392699082	0.008030428	1.28084E+19 1.47835E+19	4.29/3/E-24 4.96679E-24	3.3551E-43 3.35968E-43
	0.55	0.01124724	1.65285E+19	5.56231E-24	3.36529E-43
	0.63	0.012883287	1.79271E+19	6.04465E-24	3.3718E-43
	0.71	0.014519369	1.8941E+19	6.40053E-24	3.3792E-43
/4	0.785398163	0.016061374	1.95138E+19 1 9616E+19	6.60932E-24 6.64927E-24	3.387E-43 3.38972E-43
	0.84	0.017178086	1.96824E+19	6.67855E-24	3.39315E-43
	0.87	0.017791653	1.96837E+19	6.68599E-24	3.39671E-43
	0.9	0.018405226	1.96187E+19	6.67114E-24	3.4004E-43
	0.93	0.019018807	1.94863E+19	6.63356E-24	3.40422E-43
	0.94	0.019223335	1.9427E+19	6.61592E-24	3.40553E-43
	0.945	0.0193256	1.93945E+19	6.60613E-24	3.40618E-43
	0.95	0.019427864	1.93601E+19	6.59569E-24	3.40684E-43
	0.955	0.019530129	1.93238E+19 1.93231E+19	6.5846E-24 6.58438E-24	3.40751E-43 3.40752E-43
	0.9552	0.01953422	1.93223E+19	6.58415E-24	3.40753E-43
e	0.955316618	0.019536605	1.93215E+19	6.58388E-24	3.40755E-43
e × 1.00000000000000	0.955316618	0.019536605	1.93215E+19	6.58388E-24	3.40755E-43
	0.96	0.019632394	1.92856E+19 1 92034E+19	6.5/28/E-24 6.54743E-24	3.40817E-43 3.40952E-43
	0.98	0.020041457	1.91135E+19	6.51938E-24	3.41088E-43
	0.99	0.020245989	1.90158E+19	6.48869E-24	3.41225E-43
1	1	0.020450522	1.89105E+19	6.45535E-24	3.41364E-43
/3	1.04/19/551	0.021415881	1.83077E+19	6.2619/E-24 6.14701E-24	3.4204E-43
	1.1	0.022495904	1.74259E+19	5.97418E-24	3.42834E-43
	1.12	0.022904991	1.70343E+19	5.84522E-24	3.43145E-43
	1.15	0.02351863	1.63874E+19	5.63109E-24	3.43624E-43
В	1.170019129	0.023928118	1.30873E+19	5.4743E-24 4.5239E-24	3.4395E-43 3.45671E-43
	1.351	0.027630245	1.02229E+19	3.54913E-24	3.47175E-43
	1.37	0.028018929	9.47816E+18	3.29407E-24	3.47543E-43
	1.47	0.030064701	5.11605E+18	1.78841E-24	3.49568E-43
	1.48	0.030269286	4.63992E+18 4.15672E+18	1.62295E-24 1.45482E-24	3.49779E-43 3.49991E-43
	1.5	0.030678457	3.6665E+18	1.28403E-24	3.50206E-43
	1.51	0.030883045	3.16932E+18	1.1106E-24	3.50421E-43
	1.52	0.031087634	2.66522E+18	9.3453E-25	3.50639E-43
	1.53	0.031292225	2.15427E+18 1.63653E+18	7.55843E-25 5.74549E-25	3.50858E-43 3.51078E-43
	1.55	0.03170141	1.11204E+18	3.90661E-25	3.513E-43
	1.56	0.031906004	5.80884E+17	2.04194E-25	3.51524E-43
/2 × 0.999999999890292	1.570796327	0.032126893	9333097359	3.28307E-33	3.51767E-43
/2 × 0.9999999999994/6	1.570796327	0.032126893	299801584.4 15343.21238	1.0546E-34 5.39723E-39	3.51767E-43 3.51767E-43

case		(w =48.87668)	[c] ² exp(+)cos /(² + ²)=	[ħ] ² exp(-)cos /(² + ²)=	ratio 裄 / c=3.51767E-43
= w sin	value of []	=asin(/w)	sin ² exp(w cos)cos(w sin)	sin ² exp(-w cos)cos(w sin)	
0	0	0	0	0	#DIV/0!
/2 × 0.0000000000553261063 /2 × 0.000000292757	8.6906E-12 4.59862E-08	1.77807E-13 9.40861E-10	<u>5.33051E-05</u> 1492 53097	1.8751E-47 5 25023E-40	<u>3.51767E-43</u> 3.51767E-43
/2 × 0.00001312066853	2.06099E-05	4.21671E-07	299792458	1.05457E-34	3.51767E-43
0.001	0.001	2.04597E-05	7.05779E+11	2.4827E-31	3.51767E-43
0.001001	0.001001	2.04801E-05	7.07191E+11 7.12855E+11	2.48767E-31 2.50759E-31	<u>3.51767E-43</u> 3.51767E-43
0.00101	0.00101	2.06643E-05	7.19965E+11	2.5326E-31	3.51767E-43
0.00102	0.00102	2.08688E-05	7.34293E+11	2.583E-31	3.51767E-43
0.00105	0.00105	2.14826E-05	7.78121E+11	2.73717E-31	3.51767E-43
0.0012	0.0011	2.45516E-05	1.01632E+12	3.57508E-31	3.51767E-43
0.0015	0.0015	3.06895E-05	1.588E+12	5.58607E-31	3.51767E-43
0.002	0.002	4.09193E-05	2.82311E+12	9.93078E-31	3.51767E-43
0.003	0.003	8.18386E-05	1.12924E+13	3.97229E-30	3.51767E-43
0.005	0.005	0.000102298	1.76443E+13	6.20667E-30	3.51767E-43
0.01	0.01	0.000204597	7.05743E+13	2.48258E-29	3.51768E-43
/32	0.05	0.001022983	1.7622E+15 6.76908E+15	<u>6.19915E-28</u> 2.38161E-27	3.51785E-43 3.51836E-43
	0.12	0.002455161	1.00887E+16	3.5499E-27	3.51871E-43
	0.15	0.003068953	1.56981E+16	5.52462E-27	3.51929E-43
/16	0.17	0.003478148	2.00971E+16 2.66767E+16	7.07366E-27 9.39138E-27	3.51975E-43 3.52045E-43
	0.25	0.005114936	4.27126E+16	1.50441E-26	3.52217E-43
	0.3	0.006137935	6.06273E+16	2.1366E-26	3.52415E-43
/9	0.35	0.00716094	8.11146E+16	2.8605E-26	3.5265E-43
/0	0.392699082	0.009616186	1.38688E+17	4.90068E-26	3.53361E-43
	0.55	0.011253048	1.8145E+17	6.42245E-26	3.53951E-43
	0.63	0.012889939	2.25431E+17	7.99456E-26	3.54635E-43
/4	0.71	0.014526866	2.68425E+17 3.0591E+17	9.54019E-26 1.08976E-25	3.55414E-43 3.56235E-43
	0.81	0.016573079	3.17145E+17	1.13069E-25	3.56521E-43
	0.84	0.017186956	3.30004E+17	1.17773E-25	3.56882E-43
	0.87	0.01780084	3.41812E+17 3.5243E+17	1.22115E-25 1.26045E-25	3.57257E-43 3.57646E-43
	0.93	0.019028627	3.6172E+17	1.29513E-25	3.58048E-43
	0.935	0.019130944	3.6313E+17	1.30043E-25	3.58116E-43
	0.945	0.019233261	3.64498E+17 3.65824E+17	1.30558E-25 1.31058E-25	3.58185E-43 3.58254E-43
	0.95	0.019437896	3.67107E+17	1.31543E-25	3.58323E-43
	0.955	0.019540214	3.68347E+17	1.32013E-25	3.58393E-43
	0.9551	0.01954226	3.68371E+17 3.68396E+17	1.32022E-25 1 32032E-25	3.58395E-43
е	0.955316618	0.019546693	3.68424E+17	1.32042E-25	3.58398E-43
e × 1.0000000000000	0.955316618	0.019546693	3.68424E+17	1.32042E-25	3.58398E-43
	0.96	0.019642532	3.69543E+17	1.32468E-25	3.58463E-43
	0.98	0.020051805	3.73875E+17	1.34127E-25	3.58748E-43
	0.99	0.020256443	3.75761E+17	1.34858E-25	3.58893E-43
/3	1 047107551	0.020461082	3.77453E+17	1.3552E-25	3.59039E-43
	1.07	0.02189358	3.83445E+17	1.37005E-25	3.60105E-43
	1.1	0.022507521	3.82602E+17	1.37961E-25	3.60585E-43
	1.12	0.022916819	3.80804E+17	1.37437E-25	3.60913E-43
В	1.170019129	0.023940474	3.71694E+17	1.35949E-25	3.6176E-43
	1.27	0.025986686	3.31752E+17	1.20615E-25	3.63571E-43
	1.351	0.027644515	2.75669E+17	1.00661E-25	3.65154E-43
	1.37	0.028033399	2.59181E+17 1.5011E+17	9.4/412E-26 5.51913E-26	3.67672E-43
	1.48	0.030284918	1.37066E+17	5.04258E-26	3.67894E-43
	1.49	0.030489609	1.23622E+17	4.55073E-26	3.68118E-43
	1.5	0.030694302	1.09774E+17 9.55213F+16	4.04346E-26 3.52063E-26	3.68343E-43 3.6857E-43
	1.52	0.03110369	8.08602E+16	2.98211E-26	3.68799E-43
	1.53	0.031308386	6.57885E+16	2.42779E-26	3.69029E-43
	1.54	0.031513084	5.03039E+16 3.44042E+16	1.85753E-26	3.69261E-43 3.69495E-43
	1.55	0.031922483	1.80872E+16	6.68737E-27	3.6973E-43
/2 × 0.999999999890292	1.570796327	0.032143485	292618608.9	1.08265E-34	3.69986E-43
/2 × 0.9999999999996476	1.570796327	0.032143485	9399639.294	3.47773E-36 3.84847E-41	3.69986E-43

case		(w =48.886015)	[c] ² exp(+)cos /(² + ²)=	[ħ] ² exp(-)cos /(² + ²)=	ratio 竹/c=3.51767E-43
= w sin	value of []	=asin(/w)	sin ² exp(w cos)cos(w sin)	sin ² exp(-w cos)cos(w sin)	
0	0	0	0	C	#DIV/0!
/2 × 0.0000000000553261063	8.6906E-12	1.77773E-13	5.37845E-05	1.85697E-47	3.4526E-43
0.001	2.00099E-03 0.001	2.04557E-05	7.12126E+11	2.45869E-31	3.45261E-43
0.001001	0.001001	2.04762E-05	7.13551E+11	2.46361E-31	3.45261E-43
0.001005	0.001005	2.0558E-05	7.19265E+11	2.48334E-31	3.45261E-43
0.00101	0.00101	2.06603E-05	7.2644E+11	2.50811E-31	3.45261E-43
0.00102	0.00102	2.08649E-05 2.14785E-05	7.40896E+11 7.85119E+11	2.55802E-31 2.71071E-31	3.45261E-43 3.45261E-43
0.0011	0.0011	2.25013E-05	8.61673E+11	2.97502E-31	3.45261E-43
0.0012	0.0012	2.45469E-05	1.02546E+12	3.54051E-31	3.45261E-43
0.0015	0.0015	3.06836E-05	1.60228E+12	5.53205E-31	3.45261E-43
0.002	0.002	4.09115E-05 6 13672E-05	2.8485E+12 6.40911E+12	9.83475E-31	3.45261E-43
0.003	0.003	8.1823E-05	1.13939E+13	3.93388E-30	3.45261E-43
0.005	0.005	0.000102279	1.78029E+13	6.14666E-30	3.45261E-43
0.01	0.01	0.000204557	7.1209E+13	2.45857E-29	3.45261E-43
0.05	0.05	0.001022788	1.77805E+15	6.13921E-28	3.45278E-43
/32	0.09617477	0.00200824	1.01794E+16	3.51557E-27	3.45362E-43
	0.15	0.003068367	1.58393E+16	5.4712E-27	3.45419E-43
	0.17	0.003477484	2.02778E+16	7.00526E-27	3.45465E-43
/16	0.196349541	0.004016488	2.69166E+16	9.30056E-27	3.45533E-43
	0.25	0.005113959	4.30967E+16 6.11725E+16	1.48986E-26 2 1159/E-26	3.45702E-43
	0.35	0.007159573	8.18441E+16	2.83284E-26	3.46127E-43
/8	0.392699082	0.00803304	1.013E+17	3.50852E-26	3.46351E-43
	0.47	0.00961435	1.39935E+17	4.85328E-26	3.46824E-43
	0.55	0.011250899	1.83082E+17	6.36034E-26	3.47404E-43
	0.63	0.012687478	2.27458E+17 2.70839E+17	9.44793E-26	3.48075E-43
/4	0.785398163	0.016066598	3.08661E+17	1.07922E-25	3.49645E-43
	0.81	0.016569914	3.19997E+17	1.11975E-25	3.49926E-43
	0.84	0.017183674	3.32973E+17	1.16634E-25	3.5028E-43
	0.87	0.01779744	3.44887E+17 3.556E+17	1.20934E-25 1.24826E-25	3.50648E-43 3.51029E-43
	0.93	0.019024993	3.64974E+17	1.2826E-25	3.51424E-43
	0.935	0.019127291	3.66396E+17	1.28785E-25	3.51491E-43
	0.94	0.019229588	3.67776E+17	1.29295E-25	3.51558E-43
	0.945	0.019331886	3.69114E+17	1.2979E-25	3.51626E-43
	0.955	0.019536482	3.7166E+17	1.30736E-25	3.51763E-43
	0.9551	0.019538528	3.71685E+17	1.30745E-25	3.51764E-43
	0.9552	0.019540574	3.7171E+17	1.30755E-25	3.51766E-43
e	0.955316618	0.01954296	3.71738E+17	1.30765E-25	3.51767E-43
e x 1.000000000000000	0.955510618	0.01954296	3.72867E+17	1.30705E-23	3.51832E-43
	0.97	0.019843378	3.75145E+17	1.3204E-25	3.51971E-43
	0.98	0.020047976	3.77238E+17	1.3283E-25	3.52111E-43
	0.99	0.020252575	3.79141E+17	1.33554E-25	3.52253E-43
/3	1.047197551	0.020457175	3.80848E+17 3.86112E+17	1.3421E-25 1.36334E-25	3.53094E-43
	1.07	0.021889398	3.86894E+17	1.36745E-25	3.53443E-43
	1.1	0.022503222	3.86044E+17	1.36626E-25	3.53914E-43
	1.12	0.022912442	3.8423E+17	1.36108E-25	3.54236E-43
В	1.15	0.023935902	3.79539E+17 3.75038E+17	1.34634E-25 1.33164E-25	3.55067E-43
	1.27	0.025981723	3.34736E+17	1.19449E-25	3.56844E-43
	1.351	0.027639234	2.78149E+17	9.96877E-26	3.58397E-43
	1.37	0.028028044	2.61513E+17	9.38247E-26	3.58777E-43
	1.47	0.030279134	1.51461E+17 1.38299F+17	5.46574E-26 4.9938F-26	3.60868E-43 3.61086E-43
	1.49	0.030483785	1.24734E+17	4.50671E-26	3.61305E-43
	1.5	0.030688439	1.10762E+17	4.00434E-26	3.61527E-43
	1.51	0.030893093	9.63808E+16	3.48657E-26	3.61749E-43
	1.52	0.031302406	8.15877E+16 6.63804F+16	2.95326E-26 2.4043F-26	3.61974E-43
	1.53	0.031507064	5.07565E+16	1.83956E-26	3.62427E-43
	1.55	0.031711724	3.47138E+16	1.25892E-26	3.62657E-43
	1.56	0.031916385	1.82499E+16	6.62268E-27	3.62888E-43
/2 × 0.999999999999992 /2 × 0.9999999999996476	1.570796327	0.032137345	295252006.8	1.07217E-34 3.44381E-36	3.63139E-43
/2 × 0.999999999999999999	1.570796327	0.032137345	2767.960723	1.00515E-39	<u>3.6</u> 3139E-43
/2	1.570796327	0.032137345	485.382281	1.76261E-40	3.63139E-43

case		(w =48.901915)	[c] ² exp(+)cos /(² + ²)=	[ħ] ² exp(-)cos /(² + ²)=	ratio
= w sin	value of []	=asin(/w)	sin ² exp(w cos)cos(w sin)	sin ² exp(-w cos)cos(w sin)	
0	0	0	0	0	#DIV/0!
/2×0.0000000000553261063	8.6906E - 12	1.77715E-13	5.4611E-05	1.82649E-47	3.34454E-43
/2 × 0.00001312066853	2.06099E-05	4.21454E-07	307136752.5	1.02723E-34	3.34454E-43
0.001001	0.001001	2.04491E-05	7.24516E+11	2.42317E-31	3.34454E-43
0.001005	0.001005	2.05513E-05	7.30318E+11	2.44258E-31	3.34454E-43
0.00101	0.00101	2.06536E-05	7.37603E+11	2.46694E-31	3.34454E-43
0.00102	0.00102	2.08581E-05	7.52281E+11	2.51603E-31	3.34454E-43
0.00105	0.00105	2.14716E-05	7.97184E+11 8 74914E+11	2.66621E-31 2.92618E-31	3.34454E-43
0.0012	0.0012	2.45389E-05	1.04122E+12	3.4824E-31	3.34454E-43
0.0015	0.0015	3.06736E-05	1.6269E+12	5.44125E-31	3.34454E-43
0.002	0.002	4.08982E-05	2.89227E+12	9.67332E-31	3.34454E-43
0.003	0.003	6.13473E-05	6.5076E+12	2.17649E-30	3.34454E-43
0.004	0.004	8.17964E-05	1.1569E+13 1.80765E+13	3.86931E-30 6.04576E-30	3.34454E-43
0.00	0.000	0.000204491	7.23033E+13	2.41822E-29	3.34455E-43
0.05	0.05	0.001022455	1.80537E+15	6.03844E-28	3.34471E-43
/32	0.09817477	0.002007587	6.93491E+15	2.31987E-27	3.3452E-43
	0.12	0.002453894	1.03358E+16	3.45787E-27	3.34552E-43
	0.15	0.003067369	1.60827E+16 2.05894E+16	5.38139E-27 6.89028E-27	3.34608E-43 3.34652E-43
/16	0.196349541	0.004015182	2.73302E+16	9.1479E-27	3.34718E-43
	0.25	0.005112297	4.3759E+16	1.46541E-26	3.34882E-43
	0.3	0.006134768	6.21125E+16	2.08121E-26	3.3507E-43
10	0.35	0.007157245	8.31018E+16	2.78634E-26	3.35293E-43
/8	0.392699082	0.008030428	1.02856E+17	477362E-26	3.3551E-43 3.35968E-43
	0.55	0.01124724	1.85896E+17	6.25593E-26	3.36529E-43
	0.63	0.012883287	2.30954E+17	7.78729E-26	3.3718E-43
	0.71	0.014519369	2.75001E+17	9.29283E-26	3.3792E-43
/4	0.785398163	0.016061374	3.13405E+17	1.0615E-25	3.387E-43
	0.81	0.016564526	3.24915E+17 3.3809E+17	1.10137E-25	3.38972E-43
	0.87	0.017791653	3.50187E+17	1.18949E-25	3.39671E-43
	0.9	0.018405226	3.61066E+17	1.22777E-25	3.4004E-43
	0.93	0.019018807	3.70583E+17	1.26155E-25	3.40422E-43
	0.935	0.019121071	3.72027E+17	1.26671E-25	3.40487E-43
	0.94	0.019223335	3.74787E+17	1.27659E-25	3.40533E-43
	0.95	0.019427864	3.76102E+17	1.28132E-25	3.40684E-43
	0.955	0.019530129	3.77373E+17	1.2859E-25	3.40751E-43
	0.9551	0.019532174	3.77398E+17	1.28599E-25	3.40752E-43
•	0.955316618	0.01953422	3.77423E+17	1.28608E-25	3.40753E-43
e × 1.0000000000000	0.955316618	0.019536605	3.77452E+17	1.28618E-25	3.40755E-43
	0.96	0.019632394	3.78598E+17	1.29033E-25	3.40817E-43
	0.97	0.019836925	3.80911E+17	1.29872E-25	3.40952E-43
	0.98	0.020041457	3.83036E+17	1.30649E-25	3.41088E-43
1	0.99	0.020245989	3.84908E+17 3.86702E+17	1.31381E-25	3.41225E-43
/3	1.047197551	0.021415881	3.92046E+17	1.34095E-25	3.4204E-43
	1.07	0.02188228	3.92841E+17	1.345E-25	3.42378E-43
	1.1	0.022495904	3.91978E+17	1.34383E-25	3.42834E-43
	1.12	0.022904991	3.90135E+17 3.85373E+17	1.33873E-25	3.43145E-43
В	1.170019129	0.023928118	3.80803E+17	1.30977E-25	3.4395E-43
	1.27	0.025973273	3.39882E+17	1.17487E-25	3.45671E-43
	1.351	0.027630245	2.82425E+17	9.80509E-26	3.47175E-43
	1.37	0.028018929	2.65533E+17	9.22841E-26	3.47543E-43
	1.47 1.48	0.030064701	1.53789E+17 1 40426F+17	5.3/598E-26 4 91179F-26	3.49568E-43
	1.49	0.030473871	1.26652E+17	4.4327E-26	3.49991E-43
	1.5	0.030678457	1.12465E+17	3.93858E-26	3.50206E-43
	1.51	0.030883045	9.78626E+16	3.42931E-26	3.50421E-43
	1.52	0.031087634	8.28421E+16	2.90476E-26	3.50639E-43
	1.53	0.031292225	5.15369E+16		<u>3.5</u> 1078E-43
	1.55	0.03170141	3.52475E+16	1.23824E-26	3.513E-43
	1.56	0.031906004	1.85305E+16	6.51392E-27	3.51524E-43
/2 × 0.9999999999999992	1.570796327	0.032126893	299791839.4	1.05457E-34	3.51767E-43
/2 × 0.999999999996476	1.570796327	0.032126893	9630036.525	3.38753E-36	3.51767E-43
/2	1.570796327	0.032126893	492.844946	1.73366E-40	3.51767E-43

case		(w =48.87668)	[c] exp(+)=	[桁] exp(-)=	ratio
= w sin	value of []	=asin(/w)	exp(w cos)	exp(-w cos)	
0	0	0	1.68606E+21	5.931E-22	3.51767E-43
/2 × 0.0000000000553261063	8.6906E-12	1.77807E-13	1.68606E+21	5.931E-22	3.51767E-43
/2 × 0.000013120 66853	2.06099E-05 0.001	4.21671E-07 2.04597E-05	1.68606E+21	5.931E-22 5.931E-22	3.51767E-43 3.51767E-43
0.001001	0.001001	2.04801E-05	1.68606E+21	5.931E-22	3.51767E-43
0.001005	0.001005	2.0562E-05	1.68606E+21	5.931E-22	3.51767E-43
0.00101	0.00101	2.06643E-05	1.68606E+21	5.931E-22	3.51767E-43
0.00102	0.00102	2.08688E-05 2.14826E-05	1.68606E+21	5.931E-22	3.51767E-43
0.0011	0.0011	2.25056E-05	1.68606E+21	5.931E-22	3.51767E-43
0.0012	0.0012	2.45516E-05	1.68606E+21	5.931E-22	3.51767E-43
0.0015	0.0015	3.06895E-05	1.68606E+21	5.931E-22	3.51767E-43
0.002	0.002	6.1379E-05	1.68606E+21	5.931E-22	3.51767E-43
0.004	0.004	8.18386E-05	1.68606E+21	5.931E-22	3.51767E-43
0.005	0.005	0.000102298	1.68606E+21	5.931E-22	3.51767E-43
0.01	0.01	0.000204597	1.68606E+21 1.68601E+21	5.931E-22 5 93115E-22	3.51768E-43 3.51785E-43
/32	0.09817477	0.002008623	1.68589E+21	5.93158E-22	3.51836E-43
	0.12	0.002455161	1.68581E+21	5.93187E-22	3.51871E-43
	0.15	0.003068953	1.68567E+21	5.93236E-22	3.51929E-43
/16	0.196349541	0.003478148	1.68539E+21	5.93275E-22 5.93333E-22	3.51975E-43 3.52045E-43
	0.25	0.005114936	1.68498E+21	5.93479E-22	3.52217E-43
	0.3	0.006137935	1.68451E+21	5.93646E-22	3.52415E-43
/0	0.35	0.00716094	1.68395E+21	5.93843E-22	3.5265E-43
/8	0.392699082	0.009616186	1.68225E+21	5.94036E-22	3.53361E-43
	0.55	0.011253048	1.68085E+21	5.94938E-22	3.53951E-43
	0.63	0.012889939	1.67923E+21	5.95513E-22	3.54635E-43
14	0.71	0.014526866	1.67738E+21	5.96166E-22	3.55414E-43
/4	0.785398103	0.016573079	1.67478E+21	5.97094E-22	3.56521E-43
	0.84	0.017186956	1.67393E+21	5.97396E-22	3.56882E-43
	0.87	0.01780084	1.67305E+21	5.9771E-22	3.57257E-43
	0.9	0.01841473	1.67214E+21 1.6712F+21	5.98035E-22 5.98371E-22	3.57646E-43 3.58048E-43
	0.935	0.019130944	1.67104E+21	5.98428E-22	3.58116E-43
	0.94	0.019233261	1.67088E+21	5.98485E-22	3.58185E-43
	0.945	0.019335579	1.67072E+21	5.98543E-22	3.58254E-43
	0.95	0.019437896	1.67056E+21	5.98601E-22	3.58323E-43 3.58393E-43
	0.9551	0.01954226	1.6704E+21	5.98661E-22	3.58395E-43
	0.9552	0.019544306	1.67039E+21	5.98662E-22	3.58396E-43
e e x 1 0000000000000	0.955316618	0.019546693	1.67039E+21	5.98663E-22	3.58398E-43
	0.96	0.019642532	1.67023E+21	5.98718E-22	3.58463E-43
	0.97	0.019847168	1.66991E+21	5.98836E-22	3.58605E-43
	0.98	0.020051805	1.66957E+21	5.98956E-22	3.58748E-43
1	0.99	0.020256443	1.66924E+21 1.6689E+21	5.99077E-22 5.99199E-22	3.58893E-43 3.59039E-43
/3	1.047197551	0.02142694	1.66725E+21	5.99791E-22	3.5975E-43
	1.07	0.02189358	1.66642E+21	6.00088E-22	3.60105E-43
	1.1	0.022507521	1.66531E+21	6.00488E-22	3.60585E-43
	1.12	0.023530774	1.6634E+21	6.01179E-22	3.61416E-43
В	1.170019129	0.023940474	1.66261E+21	6.01465E-22	3.6176E-43
	1.27	0.025986686	1.65846E+21	6.02968E-22	3.63571E-43
	1.351	0.027644515	1.65486E+21 1 65399E±21	6.0428E-22 6.046E-22	3.65154E-43
	1.47	0.030080229	1.64919E+21	6.06359E-22	3.67672E-43
	1.48	0.030284918	1.64869E+21	6.06542E-22	3.67894E-43
	1.49	0.030489609	1.64819E+21	6.06727E-22	3.68118E-43
	1.5	0.030694302	1.64768E+21 1 64718F±21	6.06913E-22 6.071E-22	3.68343E-43
	1.51	0.03110369	1.64667E+21	6.07288E-22	3.68799E-43
	1.53	0.031308386	1.64615E+21	6.07477E-22	3.69029E-43
	1.54	0.031513084	1.64563E+21	6.07668E-22	3.69261E-43
	1.55	0.031717783	1.64511E+21	6.07861E-22	3.69495E-43
/2 × 0.999999999890292	1.570796327	0.031922483	<u>1.6</u> 4402E+21	6.08265E-22	<u>3.6</u> 9986E-43
/2×0.999999999996476	1.570796327	0.032143485	1.64402E+21	6.08265E-22	3.69986E-43
/2	1.570796327	0.032143485	1.64402E+21	6.08265E-22	3.69986E-43

case		(w =48.886015)	[c] exp(+)=	[ħ] exp(-)=	ratio
= w sin	value of []	=asin(/w)	exp(w cos)	exp(-w cos)	
0	0	0	1.70187E+21	5.87589E-22	3.4526E-43
/2×0.000000000553261063	8.6906E-12	1.77773E-13	1.70187E+21	5.87589E-22	3.4526E-43
/2 × 0.00001312066853	2.06099E-05	4.21591E-07	1.70187E+21	5.87589E-22	3.4526E-43
0.001	0.001	2.04557E-05	1.70187E+21	5.87589E-22	3.45261E-43
0.001001	0.001001	2.04762E-05	1.70187E+21	5.87589E-22	3.45261E-43
0.001005	0.001005	2.0558E-05	1.70187E+21	5.87589E-22	3.45261E-43
0.00102	0.00101	2.08649E-05	1.70187E+21	5.87589E-22	3.45261E-43
0.00105	0.00105	2.14785E-05	1.70187E+21	5.87589E-22	3.45261E-43
0.0011	0.0011	2.25013E-05	1.70187E+21	5.87589E-22	3.45261E-43
0.0012	0.0012	2.45469E-05	1.70187E+21	5.87589E-22	3.45261E-43
0.0015	0.0015	3.06836E-05	1.70187E+21	5.87589E-22	3.45261E-43
0.002	0.002	4.09115E-05	1.70187E+21	5.87589E-22	3.45261E-43
0.003	0.003	6.13672E-05	1.70187E+21	5.87589E-22	3.45261E-43
0.004	0.004	8.1823E-05	1.70187E+21	5.87589E-22	3.45261E-43
0.003	0.005	0.000102279	1.70187E+21	5.87589E-22	3.45261E-43
0.05	0.01	0.001022788	1.70183E+21	5.87604E-22	3.45278E-43
/32	0.09817477	0.00200824	1.7017E+21	5.87647E-22	3.45329E-43
	0.12	0.002454692	1.70162E+21	5.87675E-22	3.45362E-43
	0.15	0.003068367	1.70148E+21	5.87724E-22	3.45419E-43
	0.17	0.003477484	1.70137E+21	5.87762E-22	3.45465E-43
/16	0.196349541	0.004016488	1.7012E+21	5.8782E-22	3.45533E-43
	0.25	0.005113959	1.70078E+21	5.87964E-22	3.45702E-43
	0.3	0.006136763	1.7003E+21	5.8813E-22	3.45897E-43
/8	0.392699082	0.007159573	1.699/4E+21 1.69919F±21	5.88516F-22	3.4612/E-43
	0.47	0.00961435	1.69803E+21	5.88918E-22	3.46824E-43
	0.55	0.011250899	1.69661E+21	5.8941E-22	3.47404E-43
	0.63	0.012887478	1.69498E+21	5.89979E-22	3.48075E-43
	0.71	0.014524092	1.69312E+21	5.90626E-22	3.48839E-43
/4	0.785398163	0.016066598	1.69117E+21	5.91308E-22	3.49645E-43
	0.81	0.016569914	1.69049E+21	5.91545E-22	3.49926E-43
	0.84	0.017183674	1.68963E+21	5.91845E-22	3.5028E-43
	0.87	0.017/9/44	1.68783E+21	5.92156E-22	3.50648E-43
	0.93	0.019024993	1.68688E+21	5.9281E-22	3.51424E-43
	0.935	0.019127291	1.68672E+21	5.92867E-22	3.51491E-43
	0.94	0.019229588	1.68656E+21	5.92924E-22	3.51558E-43
	0.945	0.019331886	1.6864E+21	5.92981E-22	3.51626E-43
	0.95	0.019434184	1.68623E+21	5.93038E-22	3.51694E-43
	0.955	0.019536482	1.68607E+21	5.93096E-22	3.51763E-43
	0.9551	0.019538528	1.68606E+21	5.93097E-22	3.51764E-43
	0.9552	0.019540574	1.68606E+21	5.93098E-22	3.51/66E-43
e x 1.000000000000	0.955316618	0.01954296	1.68606E+21	5.931E-22	3.51767E-43
	0.96	0.01963878	1.6859E+21	5.93154E-22	3.51832E-43
	0.97	0.019843378	1.68557E+21	5.93271E-22	3.51971E-43
	0.98	0.020047976	1.68523E+21	5.9339E-22	3.52111E-43
	0.99	0.020252575	1.68489E+21	5.93509E-22	3.52253E-43
1	1	0.020457175	1.68455E+21	5.9363E-22	3.52397E-43
/3	1.047197551	0.021422848	1.68289E+21	5.94217E-22	3.53094E-43
	1.07	0.021889398	1.68206E+21	5.94511E-22	3.53443E-43
	1.1	0.022903222	1.68017F+21	5.95177F-22	3.54236F-43
	1.15	0.02352628	<u>1.679E+</u> 21	5.95592E-22	<u>3.5473E</u> -43
В	1.170019129	0.023935902	1.6782E+21	5.95875E-22	3.55067E-43
	1.27	0.025981723	1.67402E+21	5.97364E-22	3.56844E-43
	1.351	0.027639234	1.67039E+21	5.98663E-22	3.58397E-43
	1.37	0.028028044	1.66951E+21	5.9898E-22	3.58777E-43
	1.47	0.030074483	1.66466E+21	6.00723E-22	3.60868E-43
	1.48	0.030279134	1.66416E+21	6.00904E-22	3.61086E-43
	1.49	0.030483785	1.00365E+21	6.0108/E-22	3.01305E-43
	1.51	0.030893093	1.66263E+21	6.01456E-22	3.61749E-43
	1.52	0.031097749	1.66212E+21	6.01643E-22	3.61974E-43
	1.53	0.031302406	1.6616E+21	6.0183E-22	3.622E-43
	1.54	0.031507064	1.66108E+21	6.02019E-22	3.62427E-43
	1.55	0.031711724	1.66055E+21	6.0221E-22	3.62657E-43
/00000000000000000000000000000000000	1.56	0.031916385	1.66002E+21	6.02401E-22	3.62888E-43
/2 × 0.99999999999999992	1.570796327	0.032137345	1.65945E+21	6.0261E-22	3.63139E-43
/2 × 0.3333333333333939904/0	1,570796327	0.032137345	1.65945E+21	6.0261E-22	3.63139E-43

case		(w =48.901915)	[c] exp(+)=	[ˈħ] exp(-)=	ratio	product c*抪
= w sin	value of []	=asin(/w)	exp(w cos)	exp(-w cos)		case,,
0	0	0	1.72915E+21	5.7832E-22	3.34454E-43	1
/2×0.000000000553261063	8.6906E-12	1.77715E-13	1.72915E+21	5.7832E-22	3.34454E-43	1
/2 × 0.000013120 66853	2.06099E-05	4.21454E-07	1.72915E+21	5.7832E-22	3.34454E-43	1
0.001	0.001	2.04491E-05	1.72915E+21	5.7832E-22	3.34454E-43	1
0.001005	0.001005	2.05513E-05	1.72915E+21	5.7832E-22	3.34454E-43	1
0.00101	0.00101	2.06536E-05	1.72915E+21	5.7832E-22	3.34454E-43	
0.00102	0.00102	2.08581E-05	1.72915E+21	5.7832E-22	3.34454E-43	1
0.00105	0.00105	2.14716E-05	1.72915E+21	5.7832E-22	3.34454E-43	1
0.0011	0.0011	2.2494E-05	1.72915E+21	5.7832E-22	3.34454E-43	
0.0012	0.0012	3.06736E-05	1.72915E+21	5.7832E-22	3.34454E-43	
0.002	0.002	4.08982E-05	1.72915E+21	5.7832E-22	3.34454E-43	ſ
0.003	0.003	6.13473E-05	1.72915E+21	5.7832E-22	3.34454E-43	
0.004	0.004	8.17964E-05	1.72915E+21	5.7832E-22	3.34454E-43	1
0.005	0.005	0.000102245	1.72915E+21	5.7832E-22	3.34454E-43	
0.05	0.05	0.001022455	1.72914E+21	5.78335E-22	3.34471E-43	
/32	0.09817477	0.002007587	1.72898E+21	5.78377E-22	3.3452E-43	1
	0.12	0.002453894	1.72889E+21	5.78405E-22	3.34552E-43	1
	0.15	0.003067369	1.72875E+21	5.78453E-22	3.34608E-43	1
(16	0.17	0.003476353	1.72864E+21	5.78491E-22	3.34652E-43	1
/10	U.196349541 0.25	0.004015182	1./2847E+21	5./8548E-22	3.34718E-43	
	0.23	0.006134768	1.72756E+21	5.78852E-22	3.3507E-43	·
	0.35	0.007157245	1.72698E+21	5.79045E-22	3.35293E-43	1
/8	0.392699082	0.008030428	1.72642E+21	5.79233E-22	3.3551E-43	1
	0.47	0.009611224	1.72525E+21	5.79628E-22	3.35968E-43	1
	0.55	0.01124724	1.72381E+21	5.80111E-22	3.36529E-43	
	0.03	0.012663267	1.72026E+21	5.81309E-22	3.3718E-43	1
/4	0.785398163	0.016061374	1.71827E+21	5.81979E-22	3.387E-43	1
	0.81	0.016564526	1.71759E+21	5.82213E-22	3.38972E-43	1
	0.84	0.017178086	1.71672E+21	5.82508E-22	3.39315E-43	
	0.87	0.017791653	1.71582E+21	5.82813E-22	3.39671E-43	1
	0.9	0.018405226	1.71488E+21	5.8313E-22 5.83457E-22	3.4004E-43 3.40422E-43	1
	0.935	0.019121071	1.71376E+21	5.83513E-22	3.40487E-43	1
	0.94	0.019223335	1.71359E+21	5.83569E-22	3.40553E-43	
	0.945	0.0193256	1.71343E+21	5.83625E-22	3.40618E-43	1
	0.95	0.019427864	1.71326E+21	5.83682E-22	3.40684E-43	1
	0.955	0.019530129	1.7131E+21	5.83739E-22	3.40751E-43	
	0.9552	0.01953422	1.71309E+21	5.83741E-22	3.40753E-43	1
е	0.955316618	0.019536605	1.71309E+21	5.83742E-22	3.40755E-43	1
e × 1.00000000000000000000000000000000000	0.955316618	0.019536605	1.71309E+21	5.83742E-22	3.40755E-43	
	0.96	0.019632394	1.71293E+21	5.83796E-22	3.40817E-43	
	0.97	0.019836925	1.71259E+21	5.83911E-22	3.40952E-43	
	0.98	0.020245989	<u>1.7</u> 119E+21	<u>5.8</u> 4145E-22	<u>3.41225E-43</u>	
1	1	0.020450522	1.71156E+21	5.84264E-22	3.41364E-43	1
/3	1.047197551	0.021415881	1.70986E+21	5.84842E-22	3.4204E-43	1
	1.07	0.02188228	1.70902E+21	5.8513E-22	3.42378E-43	1
	1.1	0.022495904	1.70788E+21	5.8552E-22	3.42834E-43	
	1.12	0.022904991	<u>1.70</u> 592E+21	<u>5.8</u> 6194E-22	<u>3.4</u> 3624E-43	
В	1.170019129	0.023928118	1.70511E+21	5.86473E-22	3.4395E-43	1
	1.27	0.025973273	1.70086E+21	5.87938E-22	3.45671E-43	1
	1.351	0.027630245	1.69717E+21	5.89216E-22	3.47175E-43	1
	1.37	0.028018929	1.69627E+21	5.89528E-22	3.47543E-43	1
	1.47	0.030269286	1.69084E+21	5.91243E-22	3.49779E-43	
	1.49	0.030473871	1.69033E+21	5.91601E-22	3.49991E-43	1
	1.5	0.030678457	1.68981E+21	5.91782E-22	3.50206E-43	1
	1.51	0.030883045	1.68929E+21	5.91964E-22	3.50421E-43	
	1.52	0.031087634	1.68877E+21	5.92147E-22	3.50639E-43	
	1.53	0.031292225	1.68824E+21	5.92332E-22	3.50858E-43	
	1.54	0.03170141	1.68718E+21	5.92706E-22	<u>3.513E</u> -43	·
	1.56	0.031906004	1.68664E+21	5.92894E-22	3.51524E-43	
/2×0.999999999890292	1.570796327	0.032126893	1.68606E+21	5.93099E-22	3.51767E-43	
/2 × 0.999999999996476	1.570796327	0.032126893	1.68606E+21	5.93099E-22	3.51767E-43	
12	1.570796327	0.032126893	1.68606E+21	5.93099E-22	3.51767E-43	1
[VAMS] unit system

Physical quantity	Unit	Power of Dimention								
		[VAMS] unit system				[SI] unit system				
		V	Α	m	S	Α	Kg	m	S	
Length	m	0	0	1	0	0	0	1	0	
Time	S	0	0	0	1	0	0	0	1	
Mass	Kg	1	1	-2	3	0	1	0	0	
Momentum	N・s	1	1	-1	2	0	1	1	-1	
Force	N	1	1	-1	1	0	1	1	-2	
Energy	J	1	1	0	1	0	1	2	-2	
Angular momentum	J۰s	1	1	0	2	0	1	2	-1	
Power	Р	1	1	0	0	0	1	2	-3	
Electric charge, Electric flux	С	0	1	0	1	1	0	0	1	
Magnetic flux, Magnetic charge	wb	1	0	0	1	-1	1	2	-2	
Electric potential, Magnetic current	V	1	0	0	0	-1	1	2	-3	
Electric current, Magnetic potential	A	0	1	0	0	1	0	0	0	
Electric current density	A/Am ²	0	1	-2	0	1	0	-2	0	
Density of electric charge	C/m ³	0	1	-3	1	1	0	-3	1	
Electric displacement	C/m ²	0	1	-2	1	1	0	-2	1	
Flux density	Т	1	0	-2	1	-1	1	0	-2	
Electric field	V/m	1	0	- 1	0	- 1	1	1	-3	
Magnetic field	A/m	0	1	- 1	0	1	0	-1	0	
Dielectric constant	F/m	-1	1	- 1	1	2	-1	-3	4	
Magnetic permeability	H/m	1	- 1	- 1	1	-2	1	1	-2	
Electric resistance		1	- 1	0	0	-2	1	2	-3	
Conductance	S	-1	1	0	0	2	-1	-2	3	
Electric conductivity	1/(• m)	-1	1	- 1	0	2	-1	-3	3	
Electric capacity	F	-1	1	0	1	2	-1	-2	4	
Inductance	Н	1	- 1	0	1	-2	1	2	-2	
Electric moment	C・m	0	1	1	1	1	0	1	1	
Magnetic moment	Wb・m	1	0	1	1	- 1	1	3	-2	
Electric polarization	C/m ²	0	1	-2	1	1	0	-2	1	
Magnetic polarization	Wb/m ²	1	0	-2	1	- 1	1	0	-2	

[VAMS] 単位系

	単位	基本単位ベキ							
物理量		[VAMS]単位系				[SI]単位系			
		V	Α	m	s	Α	Kg	m	S
長さ	m	0	0	1	0	0	0	1	0
時間	S	0	0	0	1	0	0	0	1
質量	Kg	1	1	-2	3	0	1	0	0
運動量	N·s	1	1	-1	2	0	1	1	-1
カ	N	1	1	-1	1	0	1	1	-2
エネルギー	J	1	1	0	1	0	1	2	-2
角運動量	J۰s	1	1	0	2	0	1	2	-1
仕事率	Р	1	1	0	0	0	1	2	-3
電荷、電束	С	0	1	0	1	1	0	0	1
磁束、磁荷	wb	1	0	0	1	-1	1	2	-2
電位、磁流	V	1	0	0	0	- 1	1	2	-3
電流、磁位	A	0	1	0	0	1	0	0	0
電流密度	A/Am ²	0	1	-2	0	1	0	-2	0
電荷密度	C/m ³	0	1	-3	1	1	0	-3	1
電束密度	C/m ²	0	1	-2	1	1	0	-2	1
磁束密度	Т	1	0	-2	1	-1	1	0	-2
電場	V/m	1	0	-1	0	-1	1	1	-3
磁場	A/m	0	1	-1	0	1	0	-1	0
誘電率	F/m	-1	1	-1	1	2	- 1	-3	4
透磁率	H/m	1	-1	-1	1	-2	1	1	-2
電気抵抗		1	-1	0	0	-2	1	2	-3
コンダクタンス	S	-1	1	0	0	2	-1	-2	3
電気伝導度	1/(•m)	-1	1	-1	0	2	-1	-3	3
電気容量	F	-1	1	0	1	2	-1	-2	4
インダクタンス	Н	1	- 1	0	1	-2	1	2	-2
電気モーメント	C・m	0	1	1	1	1	0	1	1
磁気モーメント	Wb・m	1	0	1	1	-1	1	3	-2
電気分極	C/m ²	0	1	-2	1	1	0	-2	1
磁気分極	Wb/m ²	1	0	-2	1	-1	1	0	-2